H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

J. Liu and N. Bowler, “Analysis of double-negative (DNG) bandwidth for a metamaterial composed of magnetodielectric spheres embedded in a matrix,” IEEE Antennas Wireless Propagat. Lett. 10, 399–402 (2011).

[CrossRef]

G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-shell nanoparticle dispersed liquid crystal cells for metamaterial applications,” J. Nanophoton. 5, 051603 (2011).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011).

[CrossRef]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton. 4, 041577 (2010).

[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE 7757, 775738 (2010).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microw. Wireless Compon. Lett. 19, 269–271 (2009).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a regular array of resonant dielectric inclusions,” Radioengineering 18, 111–116 (2009).

R. A. Shore and A. D. Yaghjian, “Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres,” IEEE Trans. Antennas Propag. 57, 3077–3091 (2009).

[CrossRef]

I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009).

A. Vallecchi and F. Capolino, “Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial,” Opt. Express 17, 15216–15227 (2009).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[CrossRef]

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394, 180–183 (2007).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers,” Radio Sci. 42, RS6S21 (2007).

[CrossRef]

A. Alu, and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).

[CrossRef]

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Correlation length and negative phase velocity in isotropic dielectric-magnetic materials,” J. Appl. Phys. 100, 063533–063535 (2006).

[CrossRef]

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Lett. 48, 2553–2556 (2006).

[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).

[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717 (2005).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech. 45, 52–57 (1997).

[CrossRef]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974).

[CrossRef]

L. S. Benenson, “Dispersion equations of periodic structures,” Radio Eng. Electron. Phys. 16, 1280–1290 (1971).

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).

[CrossRef]

F. S. Ham and B. Segall, “Energy bands in periodic lattices-Green’s function method,” Phys. Rev. 124, 1786 (1961).

[CrossRef]

P. P. Ewald, “The calculation of optical and electrostatic grid potential,” Ann. Phys. 64, 253–287 (1921).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

A. Alu and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).

[CrossRef]

A. Alu, and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011).

[CrossRef]

G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-shell nanoparticle dispersed liquid crystal cells for metamaterial applications,” J. Nanophoton. 5, 051603 (2011).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-shell nanoparticle dispersed liquid crystal cells for metamaterial applications,” J. Nanophoton. 5, 051603 (2011).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

L. S. Benenson, “Dispersion equations of periodic structures,” Radio Eng. Electron. Phys. 16, 1280–1290 (1971).

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech. 45, 52–57 (1997).

[CrossRef]

J. Liu and N. Bowler, “Analysis of double-negative (DNG) bandwidth for a metamaterial composed of magnetodielectric spheres embedded in a matrix,” IEEE Antennas Wireless Propagat. Lett. 10, 399–402 (2011).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton. 4, 041577 (2010).

[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE 7757, 775738 (2010).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).

[CrossRef]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton. 4, 041577 (2010).

[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE 7757, 775738 (2010).

[CrossRef]

A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microw. Wireless Compon. Lett. 19, 269–271 (2009).

[CrossRef]

A. Vallecchi and F. Capolino, “Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial,” Opt. Express 17, 15216–15227 (2009).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

S. Steshenko and F. Capolino, “Single dipole approximation for modeling collection of nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.

A. Vallecchi and F. Capolino, “Metamaterials based on pairs of tightly coupled scatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 19.1.

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech. 45, 52–57 (1997).

[CrossRef]

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

A. Alu and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).

[CrossRef]

A. Alu, and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).

[CrossRef]

P. P. Ewald, “The calculation of optical and electrostatic grid potential,” Ann. Phys. 64, 253–287 (1921).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press and SPIE Press, 2009).

F. S. Ham and B. Segall, “Energy bands in periodic lattices-Green’s function method,” Phys. Rev. 124, 1786 (1961).

[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394, 180–183 (2007).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a regular array of resonant dielectric inclusions,” Radioengineering 18, 111–116 (2009).

I. Vendik, M. Odit, and D. Kozlov, “All-dielectric metamaterials based on spherical and cubic inclusions,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011).

I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009).

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Correlation length and negative phase velocity in isotropic dielectric-magnetic materials,” J. Appl. Phys. 100, 063533–063535 (2006).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech. 45, 52–57 (1997).

[CrossRef]

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

J. Liu and N. Bowler, “Analysis of double-negative (DNG) bandwidth for a metamaterial composed of magnetodielectric spheres embedded in a matrix,” IEEE Antennas Wireless Propagat. Lett. 10, 399–402 (2011).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

T. G. Mackay and A. Lakhtakia, “Correlation length and negative phase velocity in isotropic dielectric-magnetic materials,” J. Appl. Phys. 100, 063533–063535 (2006).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717 (2005).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-shell nanoparticle dispersed liquid crystal cells for metamaterial applications,” J. Nanophoton. 5, 051603 (2011).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a regular array of resonant dielectric inclusions,” Radioengineering 18, 111–116 (2009).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Lett. 48, 2553–2556 (2006).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

I. Vendik, O. G. Vendik, and M. Odit, “Isotropic double-negative materials,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 21.1.

I. Vendik, M. Odit, and D. Kozlov, “All-dielectric metamaterials based on spherical and cubic inclusions,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011).

I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009).

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press and SPIE Press, 2009).

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394, 180–183 (2007).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microw. Wireless Compon. Lett. 19, 269–271 (2009).

[CrossRef]

F. S. Ham and B. Segall, “Energy bands in periodic lattices-Green’s function method,” Phys. Rev. 124, 1786 (1961).

[CrossRef]

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394, 180–183 (2007).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

R. A. Shore and A. D. Yaghjian, “Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres,” IEEE Trans. Antennas Propag. 57, 3077–3091 (2009).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers,” Radio Sci. 42, RS6S21 (2007).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Complex waves on 1D, 2D, and 3D periodic arrays of lossy and lossless magnetodielectric spheres” (Air Force Research Laboratory, 2010).

A. Sihvola, “Mixing rules,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 9.1.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE, 1999).

M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).

[CrossRef]

C. R. Simovski, “On the extraction of local material parameters of metamaterials from experimental or simulated data,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 11.1.

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

S. Steshenko and F. Capolino, “Single dipole approximation for modeling collection of nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).

[CrossRef]

A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).

[CrossRef]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton. 4, 041577 (2010).

[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE 7757, 775738 (2010).

[CrossRef]

A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microw. Wireless Compon. Lett. 19, 269–271 (2009).

[CrossRef]

A. Vallecchi and F. Capolino, “Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial,” Opt. Express 17, 15216–15227 (2009).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

A. Vallecchi and F. Capolino, “Metamaterials based on pairs of tightly coupled scatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 19.1.

I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a regular array of resonant dielectric inclusions,” Radioengineering 18, 111–116 (2009).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Lett. 48, 2553–2556 (2006).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “All-dielectric metamaterials based on spherical and cubic inclusions,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011).

I. Vendik, O. G. Vendik, and M. Odit, “Isotropic double-negative materials,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 21.1.

I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009).

I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Lett. 48, 2553–2556 (2006).

[CrossRef]

I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

[CrossRef]

I. Vendik, O. G. Vendik, and M. Odit, “Isotropic double-negative materials,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 21.1.

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres,” IEEE Trans. Antennas Propag. 57, 3077–3091 (2009).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers,” Radio Sci. 42, RS6S21 (2007).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Complex waves on 1D, 2D, and 3D periodic arrays of lossy and lossless magnetodielectric spheres” (Air Force Research Laboratory, 2010).

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717 (2005).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

P. P. Ewald, “The calculation of optical and electrostatic grid potential,” Ann. Phys. 64, 253–287 (1921).

[CrossRef]

H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U. C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “Resonant magnetic response of TiO2 microspheres at terahertz frequencies,” Appl. Phys. Lett. 100, 061117 (2012).

[CrossRef]

J. Liu and N. Bowler, “Analysis of double-negative (DNG) bandwidth for a metamaterial composed of magnetodielectric spheres embedded in a matrix,” IEEE Antennas Wireless Propagat. Lett. 10, 399–402 (2011).

[CrossRef]

A. Vallecchi, F. Capolino, and A. G. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microw. Wireless Compon. Lett. 19, 269–271 (2009).

[CrossRef]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003).

[CrossRef]

R. A. Shore and A. D. Yaghjian, “Traveling waves on three-dimensional periodic arrays of two different alternating magnetodielectric spheres,” IEEE Trans. Antennas Propag. 57, 3077–3091 (2009).

[CrossRef]

C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, “Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles,” IEEE Trans. Electromagn. Compat. 47, 853–865 (2005).

[CrossRef]

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).

[CrossRef]

A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-loss material complex permittivity determination,” IEEE Trans. Microwave Theory Tech. 45, 52–57 (1997).

[CrossRef]

O. Ouchetto, Q. Cheng-Wei, S. Zouhdi, L. Le-Wei, and A. Razek, “Homogenization of 3-D periodic bianisotropic metamaterials,” IEEE Trans. Microwave Theory Tech. 54, 3893–3898 (2006).

[CrossRef]

J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

[CrossRef]

K. Berdel, J. G. Rivas, P. H. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microwave Theory Tech. 53, 1266–1271 (2005).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Correlation length and negative phase velocity in isotropic dielectric-magnetic materials,” J. Appl. Phys. 100, 063533–063535 (2006).

[CrossRef]

L. Jylha, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102–043107 (2006).

[CrossRef]

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys. 92, 6252–6261 (2002).

[CrossRef]

G. Nehmetallah, R. Aylo, and P. P. Banerjee, “Binary and core-shell nanoparticle dispersed liquid crystal cells for metamaterial applications,” J. Nanophoton. 5, 051603 (2011).

[CrossRef]

A. Vallecchi, S. Campione, and F. Capolino, “Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas,” J. Nanophoton. 4, 041577 (2010).

[CrossRef]

V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717 (2005).

[CrossRef]

I. B. Vendik, M. A. Odit, and D. S. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009).

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: particle resonances, phenomena and properties,” Metamaterials 3, 10–27 (2009).

I. Vendik, O. Vendik, and M. Odit, “Isotropic artificial media with simultaneously negative permittivity and permeability,” Microw. Opt. Technol. Lett. 48, 2553–2556 (2006).

[CrossRef]

A. Vallecchi and F. Capolino, “Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial,” Opt. Express 17, 15216–15227 (2009).

[CrossRef]

A. Vallecchi, M. Albani, and F. Capolino, “Collective electric and magnetic plasmonic resonances in spherical nanoclusters,” Opt. Express 19, 2754–2772 (2011).

[CrossRef]

S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011).

[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005).

[CrossRef]

H. K. Yuan, U. K. Chettiar, W. S. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15, 1076–1083 (2007).

[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. De Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).

[CrossRef]

M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett. 31, 1259–1261 (2006).

[CrossRef]

I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14, 179–186 (2006).

[CrossRef]

F. S. Ham and B. Segall, “Energy bands in periodic lattices-Green’s function method,” Phys. Rev. 124, 1786 (1961).

[CrossRef]

M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005).

[CrossRef]

A. Alu, and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: a recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007).

[CrossRef]

A. Alu and N. Engheta, “Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles,” Phys. Rev. B 78, 085112 (2008).

[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79, 045111 (2009).

[CrossRef]

V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004).

[CrossRef]

M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[CrossRef]

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011).

[CrossRef]

I. V. Shadrivov, A. N. Reznik, and Y. S. Kivshar, “Magnetoinductive waves in arrays of split-ring resonators,” Physica B 394, 180–183 (2007).

[CrossRef]

W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974).

[CrossRef]

S. Campione, A. Vallecchi, and F. Capolino, “Closed form formulas and tunability of resonances in pairs of gold-dielectric nanoshells,” Proc. SPIE 7757, 775738 (2010).

[CrossRef]

E. F. Kuester, N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, “A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles,” Progr. Electromag. Res. B 33, 175–202 (2011).

L. S. Benenson, “Dispersion equations of periodic structures,” Radio Eng. Electron. Phys. 16, 1280–1290 (1971).

R. A. Shore and A. D. Yaghjian, “Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers,” Radio Sci. 42, RS6S21 (2007).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “3D metamaterial based on a regular array of resonant dielectric inclusions,” Radioengineering 18, 111–116 (2009).

T. J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494 (2004).

[CrossRef]

I. B. Vendik, O. G. Vendik, and M. S. Gashinova, “Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability,” Tech. Phys. Lett. 32, 429–433 (2006).

[CrossRef]

I. Vendik, M. Odit, and D. Kozlov, “All-dielectric metamaterials based on spherical and cubic inclusions,” in Selected Topics in Metamaterials and Photonic Crystals, A. Andreone, A. Cusano, A. Cutolo, and V. Galdi, eds. (World Scientific, 2011).

A. Vallecchi and F. Capolino, “Metamaterials based on pairs of tightly coupled scatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 19.1.

I. Vendik, O. G. Vendik, and M. Odit, “Isotropic double-negative materials,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 21.1.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1965).

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

S. Steshenko and F. Capolino, “Single dipole approximation for modeling collection of nanoscatterers,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 8.1.

R. A. Shore and A. D. Yaghjian, “Complex waves on 1D, 2D, and 3D periodic arrays of lossy and lossless magnetodielectric spheres” (Air Force Research Laboratory, 2010).

A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE, 1999).

A. Sihvola, “Mixing rules,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 9.1.

S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).

C. R. Simovski, “On the extraction of local material parameters of metamaterials from experimental or simulated data,” in Theory and Phenomena of Metamaterials, F. Capolino, ed. (CRC Press, 2009), p. 11.1.

S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press and SPIE Press, 2009).