Abstract

Nanostructured surfaces have proven to be effective in controlling the electric field distribution and triggering a series of interesting physical effects. In particular, ordered metallic lattices with a typical size of the same order of magnitude of the wavelength of the incident radiation exhibit extraordinary transmission and reflection properties and represent a sensitive tool to exploit surface plasmon resonance for sensing applications. We investigated, either by experimental structural and optical measurements or by modeling and calculations, samples consisting of a two-dimensional array of polymeric pillars embedded in a gold film. In particular, we analyzed the dependence of the plasmonic resonance on the pillar size. We showed that a peculiar interplay among localized modes and propagating surface plasmon polaritons exists for some selected conditions and affects the spectral distribution, lifetime, and field configuration of the plasmonic excitations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  3. F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  4. J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
    [CrossRef]
  5. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
    [CrossRef]
  6. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
    [CrossRef]
  7. Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
    [CrossRef]
  8. R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
    [CrossRef]
  9. C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
    [CrossRef]
  10. L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
    [CrossRef]
  11. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef]
  12. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
    [CrossRef]
  13. K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
    [CrossRef]
  14. P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
    [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
    [CrossRef]
  16. J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
    [CrossRef]
  17. W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
    [CrossRef]
  18. D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
    [CrossRef]
  19. S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
    [CrossRef]
  20. T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
    [CrossRef]
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics—The FDTD Method, 2nd ed. (Artech House, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used.
  22. E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic, 1980), pp. 293–294.
  23. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  24. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [CrossRef]
  25. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
    [CrossRef]
  26. The slight difference between the electric field distribution at the opposite interfaces is due to the field profile monitors, which collect not only the modes’ electric field, but also the reflected and transmitted components of the excitation source illuminating the upper side of the system.

2011 (1)

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

2010 (3)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

2009 (2)

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

2008 (3)

C. Billaudeau, S. Collin, C. Sauvan, N. Bardou, F. Pardo, and J. L. Pelouard, “Angle-resolved transmission measurements through anisotropic two-dimensional plasmonic crystals,” Opt. Lett. 33, 165–167 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

2007 (4)

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

2006 (3)

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
[CrossRef]

2005 (1)

P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
[CrossRef]

2004 (1)

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

2001 (1)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996 (2)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

1995 (1)

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Abdelsalam, M.

Abdelsalam, M. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Akozbek, N.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Astilean, S.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Atwater, Harry A.

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Bardou, N.

Barnes, W. L.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
[CrossRef]

Baumberg, J. J.

T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Billaudeau, C.

Bloemer, M. J.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Chang, Z. C.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Chen, H.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Chen, X.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Cintra, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Cole, R. M.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Collin, S.

Colpo, P.

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

de Ceglia, D.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

English, A.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Eurenius, L.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Fainman, Y.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[CrossRef]

Garcia de Abajo, F. J.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Giudicatti, S.

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

Hagness, S. C.

A. Taflove, and S. C. Hagness, Computational Electrodynamics—The FDTD Method, 2nd ed. (Artech House, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used.

Hughes, W. L.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
[CrossRef]

Hui, K. C.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Iu, H.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

Käll, M.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Kelf, T. A.

T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Knowlton, W. B.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Kuang, W.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Lalanne, P.

P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
[CrossRef]

Lee, J.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, H.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Li, J.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

Lu, W.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Mahajan, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Marabelli, F.

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Murray, W. A.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

Olsson, E.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Ong, H. C.

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic, 1980), pp. 293–294.

Pang, L.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[CrossRef]

Pardo, F.

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Pelouard, J. L.

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

Popov, V. V.

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

Qiu, M.

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Rodier, J. C.

P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

Rossi, F.

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

Ruan, Z.

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

Russell, A. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Sauvan, C.

Scalora, M.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Sepulveda, B.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Shih, M. H.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Sugawara, Y.

T. W. Teperik, V. V. Popov, F. J. Garcia de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14, 11964–11971 (2006).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Taflove, A.

A. Taflove, and S. C. Hagness, Computational Electrodynamics—The FDTD Method, 2nd ed. (Artech House, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used.

Teperik, T. W.

Tetz, K. A.

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Valsesia, A.

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

van Duyne, R. P.

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Vincenti, M. A.

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Wan, J. T. K.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

Wang, L.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Wang, S.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Weiner, J.

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xia, H.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Xu, J. B.

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

Yurke, B.

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Zeng, Y.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Zhou, R.

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

AIP Adv. (1)

D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

L. Pang, K. A. Tetz, and Y. Fainman, “Observation of the splitting of degenerate surface plasmon polariton modes in a two-dimensional metallic nanohole array,” Appl. Phys. Lett. 90, 111103 (2007).
[CrossRef]

J. Li, H. Iu, J. T. K. Wan, and H. C. Ong, “The plasmonic properties of elliptical metallic hole arrays,” Appl. Phys. Lett. 94, 033101 (2009).
[CrossRef]

K. C. Hui, J. T. K. Wan, J. B. Xu, and H. C. Ong, “Dependence of anisotropic surface plasmon lifetimes of two-dimensional hole arrays on hole geometry,” Appl. Phys. Lett. 95, 063110 (2009).
[CrossRef]

J. Opt. A (1)

P. Lalanne, J. C. Rodier, and J. P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A 7, 422–426 (2005).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Nat. Phys. (1)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

W. Kuang, A. English, Z. C. Chang, M. H. Shih, W. B. Knowlton, J. Lee, W. L. Hughes, and B. Yurke, “Cavity resonant mode in a metal film perforated with two-dimensional triangular lattice hole arrays,” Opt. Commun. 283, 4090–4093 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (5)

D. Pacifici, H. J. Lezec, Harry A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 245415 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

Z. Ruan, and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef]

Phys. Status Solidi A (1)

S. Giudicatti, A. Valsesia, F. Marabelli, P. Colpo, and F. Rossi, “Plasmonic resonances in nanostructured gold/polymer surfaces by colloidal lithography,” Phys. Status Solidi A 207, 935–942 (2010).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. Garcia de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Solid State Commun. (1)

R. Zhou, X. Chen, S. Wang, W. Lu, Y. Zeng, H. Chen, H. Li, H. Xia, and L. Wang, “The surface plasmon resonance of metal-film nanohole arrays,” Solid State Commun. 145, 23–28 (2008).
[CrossRef]

Other (3)

A. Taflove, and S. C. Hagness, Computational Electrodynamics—The FDTD Method, 2nd ed. (Artech House, 2000). A commercial software, Lumerical FDTD (www.lumerical.com), was used.

E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1 (Academic, 1980), pp. 293–294.

The slight difference between the electric field distribution at the opposite interfaces is due to the field profile monitors, which collect not only the modes’ electric field, but also the reflected and transmitted components of the excitation source illuminating the upper side of the system.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simulated transmittance spectra of a hexagonal and a square array (continuous and dashed lines, respectively) of ppAA cylinders of radius 120 nm and height 120 nm embedded in a 120 nm thick gold film on a glass substrate. The lattice constant is equal to 500 nm for the hexagonal geometry and 433 nm for the square array. In both cases, numerical simulations were performed with light normally incident from the free surface of the system.

Fig. 2.
Fig. 2.

Normal incidence TM transmittance spectrum (dashed line) and near-normal incidence (5°) TM reflectance spectra measured from the free surface and the substrate (dashed–dotted and continuous lines, respectively) of a sample characterized by almost-cylindrical ppAA pillars (radius of about 138 nm). The cylinder height is equal to the gold film thickness (about 100 nm). A SEM top view and tilted image (a) and (b), respectively) and (c) the AFM profile of a pillar are also reported. The investigated sample was modeled as a 120 nm thick gold film superimposed on a glass substrate and perforated by a hexagonal array (period 500 nm) of ppAA cylinders of radius 120 nm. (d) FDTD normal incidence transmittance and reflectance spectra recorded from the free surface and the substrate of the system are reported.

Fig. 3.
Fig. 3.

Normal incidence transmittance spectra measured with TM-polarized light of samples prepared with different etching times (4, 5, 6, 7 min): the longer the etching time, the smaller the pillar radius. The radius values, decreasing from 161 to 106 nm, were estimated by averaging the pillar size measured in the SEM images. The pillar height is about 100 nm, while the gold film is 60 nm thick. The lowest curve corresponds to the scale values, while the other curves are vertically shifted in order to favor comparison of the spectra.

Fig. 4.
Fig. 4.

Simulated transmittance spectra of 120 nm thick (a) freestanding and (b) glass-supported gold films perforated by ppAA cylinders of varying radius (60<R<200nm) arranged in a square array of period 500 nm. Numerical simulations were performed with light normally incident from the free surface of the system. Excluding the lowest one, the curves are vertically shifted in order to favor comparison of the spectra. Letters indicate the energy at which the electric field distribution was calculated (see Figs. 6 and 7).

Fig. 5.
Fig. 5.

(a) Spectral position, (b) intensity, and (c) lifetime of the two strong resonances observed in the transmittance spectra reported in Fig. 4(b) (triangular and circular labels) and of the single resonance of the corresponding freestanding films (square points) as a function of ppAA cylinders radius. The dashed line in Fig. 5(a) indicates the energy of the gold/glass SPP modes for a square array of period 500 nm, while the vertical bars associated with the square points indicate the resonance linewidth.

Fig. 6.
Fig. 6.

Electric field intensity (E2) collected at the energies corresponding to the transmittance maxima [(A) 12,340 cm1, (B) 17,380 cm1, (C) 19,520 cm1] for the square array (period 500 nm) of ppAA cylinders of radius 120 nm embedded in a freestanding 120 nm thick gold film.

Fig. 7.
Fig. 7.

Electric field intensity (E2) collected for the 120 nm thick gold films with the glass substrate and perforated by a square array (period 500 nm) of ppAA cylinders of radius 60 (D) and 200 nm (E) at the energies corresponding to the main transmittance maximum [(D) 15,175 cm1, (E) 9500cm1].

Fig. 8.
Fig. 8.

Electric field intensity (E2) collected at the energies corresponding to the transmittance maxima [(F) 11,075 cm1, (G) 12,500 cm1, (H) 13,000 cm1, (I) 13,430 cm1, (L) 15,800 cm1, (M) 16,900 cm1, (N) 19,800 cm1] for the square array (period 500 nm) of ppAA cylinders of radius 120 nm embedded in a 120 nm thick gold film on a glass substrate. The transmittance spectrum is also reported for clarity.

Fig. 9.
Fig. 9.

Comparison between FDTD results reported in Fig. 5 (open symbols) and experimental data related to three different series of samples (red, blue, and black partially filled symbols). The cylinder radius is normalized to the radius values for which the freestanding localized mode crosses the SPP energy. The spectral positions of the transmittance peaks are normalized to the gap spectral position in (a). The intensity of the higher energy transmittance peak is divided by the intensity of the lower energy peak in (b).

Metrics