Abstract

We report our investigation on the even-parity autoionization (AI) resonances of atomic uranium in the energy region 52,85053,350cm1, using the three-color optogalvanic spectroscopy technique in a U–Ne hollow cathode discharge lamp with three pulsed dye lasers. To the best of our knowledge, this is the first report of observation of even-parity AI states in atomic uranium lying more than 2000cm1 above the ionization limit. We have used four different excitation schemes, starting from the lowest metastable state of uranium at 620cm1 (K505). We have identified 102 new even-parity AI resonances in atomic uranium and assigned probable total angular momentum (J) values to these resonances. By observing 25 out of these 102 AI resonances through more than one excitation pathway, the ambiguity in the assignment of their J values has been reduced considerably.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
    [CrossRef]
  2. A. Coste, R. Avril, P. Blancard, J. Chatelet, D. Lambert, and J. Legre, “New spectroscopic data on high-lying excited levels of atomic uranium,” J. Opt. Soc. Am. 72, 103–109 (1982).
    [CrossRef]
  3. K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
    [CrossRef]
  4. V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
    [CrossRef]
  5. M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
    [CrossRef]
  6. B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
    [CrossRef]
  7. B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
    [CrossRef]
  8. P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
    [CrossRef]
  9. M. L. Shah, G. P. Gupta, V. Dev, B. Dikshit, M. S. Bhatia, and B. M. Suri, “Measurement of photoionization cross-section in atomic uranium using simultaneous observation of laser-induced photoionization and fluorescence signals,” J. Opt. Soc. Am. B 29, 600–606 (2012).
    [CrossRef]
  10. M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).
  11. M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
    [CrossRef]
  12. O. Kujirai and Y. Ogawa, “Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 67, 1056–1057 (1998).
    [CrossRef]
  13. O. Kujirai and Y. Ogawa, “Study of odd-parity autoionization states of praseodymium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 69, 2845–2849 (2000).
    [CrossRef]
  14. O. Kujirai and Y. Ogawa, “Study of even-parity autoionization states of samarium atom by laser optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 72, 1057–1068 (2003).
    [CrossRef]
  15. V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U–Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
    [CrossRef]
  16. A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
    [CrossRef]

2012 (1)

2007 (2)

A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
[CrossRef]

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

2005 (2)

P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
[CrossRef]

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U–Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

2003 (2)

O. Kujirai and Y. Ogawa, “Study of even-parity autoionization states of samarium atom by laser optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 72, 1057–1068 (2003).
[CrossRef]

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

2000 (2)

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

O. Kujirai and Y. Ogawa, “Study of odd-parity autoionization states of praseodymium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 69, 2845–2849 (2000).
[CrossRef]

1998 (1)

O. Kujirai and Y. Ogawa, “Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 67, 1056–1057 (1998).
[CrossRef]

1989 (1)

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

1987 (2)

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

1983 (1)

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).

1982 (1)

1976 (1)

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Avril, R.

Bajaj, P. N.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Bhatia, M. S.

Blancard, P.

Blaum, K.

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

Broglia, M.

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).

Bushaw, B. A.

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
[CrossRef]

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

Carlson, C. R.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Catoni, F.

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).

Chakraborti, P. K.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Chatelet, J.

Coste, A.

Dasgupta, K.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Dev, V.

Dikshit, B.

Gupta, G. P.

Jagatap, B. N.

A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
[CrossRef]

Johnson, S. A.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Kujirai, O.

O. Kujirai and Y. Ogawa, “Study of even-parity autoionization states of samarium atom by laser optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 72, 1057–1068 (2003).
[CrossRef]

O. Kujirai and Y. Ogawa, “Study of odd-parity autoionization states of praseodymium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 69, 2845–2849 (2000).
[CrossRef]

O. Kujirai and Y. Ogawa, “Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 67, 1056–1057 (1998).
[CrossRef]

Lal, B.

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Lambert, D.

Legre, J.

Mago, V. K.

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Manohar, K. G.

A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
[CrossRef]

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Marathe, A. P.

A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
[CrossRef]

May, C. A.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Miyabe, M.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

Montone, A.

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

Nortershauser, W.

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

Oba, M.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

Ogawa, Y.

O. Kujirai and Y. Ogawa, “Study of even-parity autoionization states of samarium atom by laser optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 72, 1057–1068 (2003).
[CrossRef]

O. Kujirai and Y. Ogawa, “Study of odd-parity autoionization states of praseodymium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 69, 2845–2849 (2000).
[CrossRef]

O. Kujirai and Y. Ogawa, “Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 67, 1056–1057 (1998).
[CrossRef]

Paisner, J. A.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Pulhani, A. K.

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U–Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

Raeder, S.

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

Rao, P. R. K.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Ray, A. K.

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Schumann, P. G.

P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
[CrossRef]

Shah, M. L.

Sharma, S. D.

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Solarz, R. W.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Suri, B. M.

M. L. Shah, G. P. Gupta, V. Dev, B. Dikshit, M. S. Bhatia, and B. M. Suri, “Measurement of photoionization cross-section in atomic uranium using simultaneous observation of laser-induced photoionization and fluorescence signals,” J. Opt. Soc. Am. B 29, 600–606 (2012).
[CrossRef]

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U–Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Talukdar, R.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Wakaida, I.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

Wendt, K.

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

Wendt, K. D. A.

P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
[CrossRef]

Worden, E. F.

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Zampetti, P.

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).

Ziegler, S. L.

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

Appl. Phys. B (2)

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Chakraborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U–Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

V. K. Mago, B. Lal, A. K. Ray, S. D. Sharma, and P. R. K. Rao, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

J. Phys. Colloq. (1)

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. Colloq. C7, 251–259 (1983).

J. Phys. Conf. Ser. (1)

A. P. Marathe, K. G. Manohar, and B. N. Jagatap, “New even parity autoionisation levels of UI,” J. Phys. Conf. Ser. 80, 012032 (2007).
[CrossRef]

J. Phys. Soc. Jpn. (3)

O. Kujirai and Y. Ogawa, “Observation of even-parity autoionization states of lutetium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 67, 1056–1057 (1998).
[CrossRef]

O. Kujirai and Y. Ogawa, “Study of odd-parity autoionization states of praseodymium atom by optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 69, 2845–2849 (2000).
[CrossRef]

O. Kujirai and Y. Ogawa, “Study of even-parity autoionization states of samarium atom by laser optogalvanic spectroscopy,” J. Phys. Soc. Jpn. 72, 1057–1068 (2003).
[CrossRef]

Phys. Rev. A (2)

M. Broglia, F. Catoni, A. Montone, and P. Zampetti, “Galvanic detection of laser photoionization in hollow-cathode discharges: experimental and theoretical study,” Phys. Rev. A 36, 705–714 (1987).
[CrossRef]

R. W. Solarz, C. A. May, C. R. Carlson, E. F. Worden, S. A. Johnson, and J. A. Paisner, “Detection of Rydberg states in atomic uranium using time-resolved stepwise laser photoionization,” Phys. Rev. A 14, 1129–1136 (1976).
[CrossRef]

Spectrochim. Acta Part B (3)

B. A. Bushaw, W. Nortershauser, K. Blaum, and K. Wendt, “Studies of narrow autoionizing resonances in gadolinium,” Spectrochim. Acta Part B 58, 1083–1095 (2003).
[CrossRef]

B. A. Bushaw, S. Raeder, S. L. Ziegler, and K. Wendt, “Triple-resonance autoionization of uranium optimized for diode laser excitation,” Spectrochim. Acta Part B 62, 485–491(2007).
[CrossRef]

P. G. Schumann, K. D. A. Wendt, and B. A. Bushaw, “High-resolution triple-resonance autoionization of uranium isotopes,” Spectrochim. Acta Part B 60, 1402–1411 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of experimental setup used for three-color optogalvanic spectroscopy.

Fig. 2.
Fig. 2.

(a) Typical temporal wave form of a resonant single-color optogalvanic signal, (b) two-color optogalvanic signal, (c) three-color optogalvanic signal.

Fig. 3.
Fig. 3.

Schematic of the different excitation schemes used for observation of AI states of uranium.

Fig. 4.
Fig. 4.

Portion of typical three-color, three-photon AI spectra using Scheme D in the energy region 53,29553,327cm1. (a) Fabry–Perot etalon fringes, (b) autoionization spectra with AI resonances marked with asterisks, (c) two-color spectra recorded by blocking the second laser (λ2).

Tables (1)

Tables Icon

Table 1. New Autoionization Resonances Using Three-Color, Three-Photon Photoionization Spectroscopy in a Hollow Cathode Discharge Tube

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

620cm1(J=5)λ1=566.98nm18,253.54(J=6)λ2=585.85nm35,319.21(J=6,7)λ3scannedAI.
620cm1(J=5)λ1=562.81nm18,382.94(J=4)λ2=584.1nm35,498.38(J=3,4,5)λ3scannedAI.
620cm1(J=5)λ1=562.81nm18,382.94(J=4)λ2=583.9nm35,504.71(J=5)λ3scannedAI.
620cm1(J=5)λ1=562.81nm18,382.94(J=4)λ2=584.3nm35,492.38(J=3,4,5)λ3scannedAI.

Metrics