Abstract

The aim of this work is to enhance the Q value of a photonic crystal microring resonator that can be used to buffer optical signals (in a pulse train). A conventional photonic crystal microring resonator having 60° bends exhibits poor confinement of light due to the radiation losses at the bending points. Hence, we replaced conventional bent waveguides with circularly curved ones. The Q value of the resulting ring resonator is measured, and we demonstrate, as an example, an eightfold enhancement of the Q value at a wavelength of 1340 nm. Finally, we also estimate the Q value of a ring waveguide that excludes the optical coupling between the input/output waveguides, showing that the replacement of a sharply bent waveguide by a curved one increases the Q value by up to 5.2 times at a wavelength of 1340 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
    [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  4. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6 nm free spectral range,” Opt. Lett. 22, 1244–1246 (1997).
    [CrossRef]
  5. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [CrossRef]
  6. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  7. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
    [CrossRef]
  8. S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
    [CrossRef]
  9. K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
    [CrossRef]
  10. M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
    [CrossRef]
  11. S. Kim, J. Cai, J. Jiang, and G. P. Nordin, “New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures,” Opt. Express 12, 2356–2364 (2004).
    [CrossRef]
  12. D. Goldring, U. Levy, and D. Mendlovic, “Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis,” Opt. Express 15, 3156–3168 (2007).
    [CrossRef]
  13. M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454–1455 (2001).
    [CrossRef]
  14. S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [CrossRef]
  15. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
    [CrossRef]
  16. S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
    [CrossRef]
  17. S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
    [CrossRef]
  18. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  19. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
    [CrossRef]
  20. J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
    [CrossRef]
  21. N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.
  22. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [CrossRef]

2008 (2)

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

2004 (2)

S. Kim, J. Cai, J. Jiang, and G. P. Nordin, “New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures,” Opt. Express 12, 2356–2364 (2004).
[CrossRef]

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

2002 (2)

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

2001 (1)

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454–1455 (2001).
[CrossRef]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

1999 (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

1997 (1)

1996 (2)

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

1982 (1)

Abrishamian, M. S.

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

Asakawa, K.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Boscolo, S.

S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Cai, J.

Cao, J. R.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Chodorow, M.

Choi, S.-J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Choi, Y.-S.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Chu, S. T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Dapkus, P. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

David, M.

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

Dietrich, E.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Eiselt, M.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Furuya, K.

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

Ghaffari, A.

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

Goldring, D.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Grosskopf, G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Hagness, S. C.

Hasama, T.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Ho, S. T.

Ikeda, N.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Ishikawa, H.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Itoh, M.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

Jeong, S.-H.

S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
[CrossRef]

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

Jiang, J.

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Kawashima, H.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Kim, G.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Kim, S.

Kim, S.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Kim, W. J.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Kokubun, Y.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Komori, K.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
[CrossRef]

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

Kuang, W.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Kuller, L.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Langenhorst, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Lee, Y.-H.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Levy, U.

Little, B. E.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Ludwig, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Mendlovic, D.

Midrio, M.

S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Monifi, F.

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

Nordin, G. P.

O’Brien, J. D.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Ogawa, T.

Okano, M.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
[CrossRef]

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Park, H.-G.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Pieper, W.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Rafizadeh, D.

Ryu, H.-Y.

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

Sato, S.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Shaw, H. J.

Shih, M. H.

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Someda, C.

S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Stair, K. A.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Stokes, L. F.

Sugimoto, Y.

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Sugisaka, J.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
[CrossRef]

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

Taflove, A.

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

Tiberio, R. C.

Tokushima, M.

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454–1455 (2001).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Watanabe, Y.

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

Weber, H. G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yamada, H.

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454–1455 (2001).
[CrossRef]

Yamamoto, N.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

S.-H. Jeong, N. Yamamoto, J. Sugisaka, M. Okano, and K. Komori, “GaAs-based two-dimensional photonic crystal slab ring resonator consisting of a directional coupler and bent waveguides,” J. Opt. Soc. Am. B 24, 1951–1959 (2007).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
[CrossRef]

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Yatagai, T.

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

Zhang, J. P.

Appl. Phys. Lett. (2)

S.-H. Kim, H.-Y. Ryu, H.-G. Park, G.-H. Kim, Y.-S. Choi, and Y.-H. Lee, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002).
[CrossRef]

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the reflectance of 60° waveguide bends in photonic crystal waveguides,” Appl. Phys. Lett. 86, 191104 (2005).
[CrossRef]

Electron. Lett. (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

M. Tokushima and H. Yamada, “Photonic crystal line defect waveguide directional coupler,” Electron. Lett. 37, 1454–1455 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Boscolo, M. Midrio, and C. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[CrossRef]

J. Lightwave Technol. (1)

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14, 324–335 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

S.-H. Jeong, J. Sugisaka, N. Yamamoto, M. Okano, and K. Komori, “Resonant characteristics in a two-dimensional photonic crystal ring resonator with a triangular lattice of air holes,” Jpn. J. Appl. Phys. 46, L534–L536 (2007).
[CrossRef]

K. Furuya, N. Yamamoto, Y. Watanabe, and K. Komori, “Novel ring waveguide device in a 2D photonic crystal slab: transmittance simulated by finite-difference time-domain analysis,” Jpn. J. Appl. Phys. 43, 1995–2001 (2004).
[CrossRef]

Opt. Commun. (2)

M. David, F. Monifi, A. Ghaffari, and M. S. Abrishamian, “Heterostructure wavelength division demultiplexers using photonic crystal ring resonators,” Opt. Commun. 281, 4028–4032 (2008).
[CrossRef]

J. Sugisaka, N. Yamamoto, M. Okano, K. Komori, T. Yatagai, and M. Itoh, “Development of curved two-dimensional photonic crystal waveguides,” Opt. Commun. 281, 5788–5792 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Other (1)

N. Ikeda, H. Kawashima, Y. Sugimoto, T. Hasama, K. Asakawa, and H. Ishikawa, “Coupling characteristic of micro planar lens for 2D photonic crystal waveguides,” in Proceedings of the IEEE 19th International Conference on Indium Phosphide and Related Materials (IEEE, 2007), pp. 484–486.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of the ring resonator. It consists of an input/output (I/O) waveguide and a ring waveguide. These waveguides are optically connected by a directional coupler. (b) The directional coupler in the cross state. Light in the ring waveguide is extracted from or introduced into the ring waveguide. (c) The directional coupler in the bar state. Light in the ring waveguide is confined.

Fig. 2.
Fig. 2.

Experimentally obtained transmitted-intensity spectra of photonic crystal waveguides having (i) sharp bends and (ii) circular bends. Replacing the sharp bends by circular bends increases the transmitted intensity, especially at (a) the shorter wavelength side. (b) At the longer wavelength side, the fluctuation due to the Fabry–Perot resonance has been decreased for circular bends.

Fig. 3.
Fig. 3.

Geometry of (a) a conventional hexagonal ring resonator and (b) a circularly curved ring resonator. The patterns of air holes in the dashed boxes are shown in panels (i) and (ii).

Fig. 4.
Fig. 4.

Transmitted-intensity spectrum for the hexagonal ring resonator. The upper spectrum is scanned over the entire transmission band of the photonic crystal at intervals of 0.1 nm, and arrows indicate resonance peaks. Peaks (i) and (ii) are used to evaluate the Q value. The lower three graphs are scanned in steps of 0.01 nm. The photograph shows the surface of the device when light at the resonant wavelength (1337.59 nm) is incident.

Fig. 5.
Fig. 5.

Transmitted-intensity spectrum for the circular ring resonator. The upper spectrum is scanned over the entire transmission band of the photonic crystal at intervals of 0.1 nm, and arrows indicate resonance peaks. Peaks (i) and (ii) are used to evaluate the Q value. The lower three graphs are scanned in steps of 0.01 nm. The photograph shows the surface of the device when light at the resonant wavelength (1339.08 nm) is incident.

Fig. 6.
Fig. 6.

Band diagrams of (a) a straight waveguide and (b) a directional coupler. The photonic crystal is a two-dimensional periodic structure having a lattice constant of 390 nm in a GaAs slab whose refractive index and thickness are 3.396 and 190 nm, respectively. The slab is surrounded by air. The calculation was done using a three-dimensional finite-difference time-domain method. The experimentally estimated group velocity at 1337.66 nm, which is obtained using the free spectral range (FSR) of the ring resonator, is indicated as the slope of the dotted line in (a).

Fig. 7.
Fig. 7.

Numerically calculated transmittance spectra for ring waveguides of length (a) 280a and (b) 520a. The attenuation in the ring waveguide, γ [see Eq. (1)], was set to 0.1 or 0.5.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(ω)=14|(eikeLDC+eikoLDC)+(eikeLDCeikoLDC)2e(γ+ikwgLring)2(eikeLDC+eikoLDC)e(γ+ikwgLring)|2,
Qsys1=FWHM of resonance peakpeak wavelength,
U(t)=U0exp(ωtQsys),
U(t)=U0exp(ωtQring).
U(t)=U0exp(ωtQDC),
1κ=exp(2πωnT0QDC),
T0=Lnvg,
vg=Ln×FSR,
κ=IcrossIbar+Icross.
U(t)=U0exp(ωtQDC)exp(ωtQring),
1Qsys=1Qring+1QDC.
U6=U0exp(ωT1Qring),

Metrics