Abstract

A novel (to our best knowledge) type of photonic crystal (PC) structure called modified annular PC (MAPC) that is composed of dielectric rods with off-centered air holes is thoroughly studied. The plane wave expansion method is applied for spectral analysis. A complete photonic bandgap region with a considerable value of gap width Δω/ω=7.06% is achieved by optimizing the structural parameters of the proposed periodic medium. By introducing geometrical asymmetry to the primitive cell of PC, we engineer the dispersion properties of the proposed photonic structure such that conventional equifrequency contours for the second band can be transformed into tilted rectangular shapes. This feature enables us to demonstrate the polarization insensitive tilted self-collimation effect. A hybrid structure composed of dielectric nanowire and MAPCs is offered to obtain a high degree of polarization independent guiding of light. The two-dimensional finite-difference time-domain method is carried out to verify the light guiding efficiencies. Polarization insensitive optical functionalities achieved by MAPC structure can be deployed in integrated optical circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription