Abstract

This paper proposes two schemes to generate the two-atom Knill–Laflamme–Milburn states with a strong coupling cavity-fiber system and the cavity-assisted single-photon input-output process, respectively. The significant logical operations for the generation are constructed accurately. The resonant interactions between atoms and photons in the two schemes imply a relatively short operation time, and the probabilities of successful generation are near to unity under the current experimental conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  4. S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef]
  5. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
    [CrossRef]
  6. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [CrossRef]
  7. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
    [CrossRef]
  8. X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
    [CrossRef]
  9. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
    [CrossRef]
  10. H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
    [CrossRef]
  11. X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
    [CrossRef]
  12. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef]
  13. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
    [CrossRef]
  14. S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
    [CrossRef]
  15. A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
    [CrossRef]
  16. K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
    [CrossRef]
  17. J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
    [CrossRef]
  18. K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
    [CrossRef]
  19. H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
    [CrossRef]
  20. J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
    [CrossRef]
  21. K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
    [CrossRef]
  22. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef]
  23. Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [CrossRef]
  24. P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011).
    [CrossRef]
  25. Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
    [CrossRef]
  26. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
    [CrossRef]
  27. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
    [CrossRef]
  28. J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
    [CrossRef]
  29. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
    [CrossRef]
  30. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
    [CrossRef]
  31. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  32. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
    [CrossRef]
  33. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
    [CrossRef]

2011

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011).
[CrossRef]

2010

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

2009

H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

2008

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

2007

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

2006

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

2004

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

2003

X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

2002

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

2000

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

An, J.-H.

J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Becher, C.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Becker, T.

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Blatt, R.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Cernoch, A.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Chang, M. S.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Chapman, M. S.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Chen, L.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

Chen, Q.

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Chuang, I. L.

M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Donegan, M. M.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Englert, B. G.

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

Eschner, J.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Feng, M.

J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

Feng, X. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Fitch, M. J.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

Fiuášek, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Fiurášek, J.

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

Fortier, K. M.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Franson, J. D.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

Grudka, A.

J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[CrossRef]

Guo, G.-C.

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Hamley, C. D.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Itano, W. M.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Jacobs, B. C.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kielpinski, D.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

King, B. E.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Kreuter, A.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Langer, C.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Leibfried, D.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Lemr, K.

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

Li, F.-L.

P.-B. Li and F.-L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011).
[CrossRef]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Li, P.-B.

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Mathis, W.

X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Mei, F.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Meyer, V.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Milburn, G.

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Modalwska, J.

A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[CrossRef]

Modlawska, J.

J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

Monroe, C.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Mundt, A. B.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Myatt, C. J.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Nielsen, M. L.

M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Oh, C. H.

J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Pahlke, K.

X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Pittman, T. B.

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

Popescu, S.

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

Rempe, G.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Rowe, M.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Sackett, C. A.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Sauer, J. A.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Schmidt-Kaler, F.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Shao, X.-Q.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

Soubusta, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Su, W.-J.

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

Turchette, Q. A.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Vahala, K. I.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Varcoe, B. T. H.

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Vidal, G.

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Walther, H.

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

Wang, H.-F.

H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Wineland, D. J.

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, H.-Z.

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

Yang, Z.-B.

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

Yeon, K.-H.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

Yin, Z.-Q.

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

Yu, Y. F.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Zhang, S.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

Zhang, Shou

H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

Zhang, Z. M.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Zhao, Y.-F.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

Zheng, S.-B.

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Zhu, S. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

Zou, X.-B.

X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

Europhys. Lett.

X.-Q. Shao, L. Chen, S. Zhang, Y.-F. Zhao, and K.-H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010).
[CrossRef]

J. Phys. B

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

Nat. Phys.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000).
[CrossRef]

Opt. Express

Phys. Rev. A

Z.-B. Yang, H.-Z. Wu, W.-J. Su, and S.-B. Zheng, “Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces,” Phys. Rev. A 80, 012305 (2009).
[CrossRef]

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A 69, 051804(R) (2004).
[CrossRef]

Z.-Q. Yin and F.-L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[CrossRef]

J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009).
[CrossRef]

X.-B. Zou, K. Pahlke, and W. Mathis, “Generation of an entangled state of two three-level atoms in cavity QED,” Phys. Rev. A 67, 044301 (2003).
[CrossRef]

H.-F. Wang and Shou Zhang, “Linear optical generation of multipartite entanglement with conventional photon detectors,” Phys. Rev. A 79, 042336 (2009).
[CrossRef]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

A. Grudka and J. Modalwska, “Optimal state in the Knill-Laflamme-Milburn scheme of linear optical teleportation,” Phys. Rev. A 77, 014301 (2008).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

J. Modlawska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiuášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Phys. Rev. Lett.

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

S.-B. Zheng and G.-C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett. 89, 103001 (2002).
[CrossRef]

J. D. Franson, M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman, “High-fidelity quantum logic operations using linear optical elements,” Phys. Rev. Lett. 89, 137901 (2002).
[CrossRef]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef]

Rep. Prog. Phys.

H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, “Cavity quantum electrodynamics,” Rep. Prog. Phys. 69, 1325–1382 (2006).
[CrossRef]

Rev. Mod. Phys.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Science

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstyle dynamically regulated by one atom,” Science 319, 1062–1065 (2008).
[CrossRef]

Other

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Diagrammatic illustration of entanglement generation with cavity-fiber system. (a) The atomic level configuration, where gi(i=1,2) indicates the coupling strength between the cavity mode i and the trapped atom, and Ω is the Rabi frequency of the classical pulse introduced after the atom-cavity interaction. (b) The atom-cavity-fiber system. First the two atoms are placed in optical cavities 1 and 2, and then atom 1 is transmitted into a pulse zone.

Fig. 2.
Fig. 2.

Diagrammatic illustration of entanglement generation with cavity-assisted single-photon input-output process. (a) The atomic level configuration, where Ωi(i=1,2) indicates the coupling strength between the atomic transition and the corresponding classical pulse. (b) Setup of cavity-assisted system and the pulse zones. C-PBS: circular polarization beam splitter. HWP: half-wave plate. TR: switch for photon transmission or reflection. The function of each component and the evolution of system states are specified in the text. The figure in the dotted-line frame indicates the switching on and off time of TR. That is, T0 is the time for the single-photon pulse process port-circulator-PBS-TR, while T1 is the time for TR-cavity-TR-cavity-TR.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

|ψ12=α|0012+β|1012+γ|1112,
H=i=12(giSiai+H.c.)+ν[b(a1+a2)+H.c.],
|ψ1=cosθ1|01+eiϕ1sinθ1|11,|ψ2=cosθ2|02+eiϕ2sinθ2|12.
U|Ψ12=cosθ1cosθ2|0012+eiϕ2cosθ1sinθ2|0112+eiϕ1sinθ1cosθ2|1012ei(ϕ1+ϕ2)sinθ1sinθ2|1112.
HI=2(Ωeiφ|01|+H.c.),
|01cosθ1|01ieiφsinθ1|11,|11ieiφsinθ1|01+cosθ1|11.
|ΨFIN=cosθ2|0021+eiϕ2cos2θ1sinθ2|1021ei(ϕ1+ϕ2)sin2θ1sinθ2|1121.
|ΨFIN=α|gg21+β|ig21+γ|ii21,
r(ωp)=[i(ωcωp)κ2][i(ω0ωp)+γ2]+g2[i(ωcωp)+κ2][i(ω0ωp)+γ2]+g2,
r0(ωp)=i(ωcωp)κ2i(ωcωp)+κ2.
UP45UHWPUU|L+|R2(cosθ1cosθ2|ii12+eiϕ2cosθ1sinθ2|ig12+eiϕ1sinθ1cosθ2|gi12+ei(ϕ1+ϕ2)sinθ1sinθ2|gg12)UP45UHWP12[(|L+|R)(cosθ1cosθ2|ii12+eiϕ2cosθ1sinθ2|ig12+eiϕ1sinθ1cosθ2|gi12)+(|R|L)ei(ϕ1+ϕ2)sinθ1sinθ2|gg12]UP45|L(cosθ1cosθ2|ii12+eiϕ2cosθ1sinθ2|ig12+eiϕ1sinθ1cosθ2|gi12)|Rei(ϕ1+ϕ2)sinθ1sinθ2|gg12|L+|R2(cosθ1cosθ2|ii12+eiϕ2cosθ1sinθ2|ig12+eiϕ1sinθ1cosθ2|gi12ei(ϕ1+ϕ2)sinθ1sinθ2|gg12).
|ΦFIN=cosθ2|ie21+eiϕ2cos2θ1sinθ2|ge21ei(ϕ1+ϕ2)sin2θ1sinθ2|gg21.

Metrics