Abstract

The spectra of uranium and thorium are convenient sources of reference lines for wavelength calibration at the level of a few parts in 108. We observed these spectra by laser optogalvanic spectroscopy in commercial hollow-cathode lamps using a single-frequency cw dye laser operating over the wavelength range 422 to 462 nm. Ten uranium and eight thorium lines were measured with an estimated uncertainty of 0.0003cm1 by using our Fabry–Perot wavemeter. The results are compared to previous measurements of these lines and are found to be in good agreement with, and 1 order of magnitude more accurate than, values determined by Fourier-transform spectroscopy.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. King, P. K. Schenck, K. C. Smyth, and J. C. Travis, “Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps,” Appl. Opt. 16, 2617–2619 (1977).
    [CrossRef]
  2. C. J. Sansonetti and K.-H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
    [CrossRef]
  3. W. DeGraffenreid, and C. J. Sansonetti, “Reference lines in the optogalvanic spectra of uranium and thorium over the wavelength range 694–755 nm,” J. Opt. Soc. Am. B 19, 1711–1715 (2002).
    [CrossRef]
  4. J. Cariou and P. Luc, Atlas du Spectre d’Absorption de la Molécule Tellure (Laboratoire Aimé-Cotton, CNRS II, 1980).
  5. J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991).
    [CrossRef]
  6. S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
    [CrossRef]
  7. M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
    [CrossRef]
  8. C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007).
    [CrossRef]
  9. F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
    [CrossRef]
  10. Manufactured by Photron Pty, Ltd., Arlington Heights, Ill. Identification of this commercial equipment is made to specify adequately the experiment described in this paper. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
  11. C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?,” in Advances in Laser Science—IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, 1988), pp. 548–553.
  12. T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, “Absolute wave-number measurements in Te1302: reference lines spanning the 420.9–464.6 nm region,” J. Opt. Soc. Am. B 22, 1128–1133 (2005).
    [CrossRef]
  13. B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).
  14. B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. Mex., 1983).
  15. T. A. Littlefield and A. Wood, “Interferometric wavelengths of thorium lines between 9050 and 2566 Å,” J. Opt. Soc. Am. 55, 1509–1516 (1965).
    [CrossRef]
  16. D. Goorvitch, F. P. J. Valero, and A. L. Clúa, “Interferometrically measured thorium lines between 2747 and 4572 Å,” J. Opt. Soc. Am. 59, 971–975 (1969).
    [CrossRef]
  17. W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).
  18. A. Giacchetti, M. Gallardo, M. J. Garavaglia, Z. Gonzalez, F. P. J. Valero, and E. Zakowicz, “Interferometrically measured thorium wavelengths,” J. Opt. Soc. Am. 54, 957–959 (1964).
    [CrossRef]
  19. A. Giacchetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474–489 (1970).
    [CrossRef]

2011

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

2008

F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
[CrossRef]

2007

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007).
[CrossRef]

2005

2002

1991

1984

1977

1970

1969

1965

T. A. Littlefield and A. Wood, “Interferometric wavelengths of thorium lines between 9050 and 2566 Å,” J. Opt. Soc. Am. 55, 1509–1516 (1965).
[CrossRef]

W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).

1964

Cariou, J.

J. Cariou and P. Luc, Atlas du Spectre d’Absorption de la Molécule Tellure (Laboratoire Aimé-Cotton, CNRS II, 1980).

Clúa, A. L.

DeGraffenreid, W.

Engleman, R.

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. Mex., 1983).

B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).

Gallardo, M.

Garavaglia, M. J.

Giacchetti, A.

Gillaspy, J. D.

Gonzalez, Z.

Goorvitch, D.

Holt, R. A.

Keller, R. A.

B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).

Kerber, F.

F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
[CrossRef]

King, D. S.

Lawler, J. E.

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

Littlefield, T. A.

Lovis, C.

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007).
[CrossRef]

Luc, P.

J. Cariou and P. Luc, Atlas du Spectre d’Absorption de la Molécule Tellure (Laboratoire Aimé-Cotton, CNRS II, 1980).

Mahadevan, S.

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

Meggers, W. F.

W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).

Murphy, M. T.

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

Nave, G.

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
[CrossRef]

Palmer, B. A.

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. Mex., 1983).

B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).

Pepe, F.

C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007).
[CrossRef]

Ramsey, L. W.

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

Redman, S. L.

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

Rehse, S. J.

Rosner, S. D.

Sansonetti, C. J.

F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
[CrossRef]

W. DeGraffenreid, and C. J. Sansonetti, “Reference lines in the optogalvanic spectra of uranium and thorium over the wavelength range 694–755 nm,” J. Opt. Soc. Am. B 19, 1711–1715 (2002).
[CrossRef]

J. D. Gillaspy and C. J. Sansonetti, “Absolute wavelength determinations in molecular tellurium: new reference lines for precision laser spectroscopy,” J. Opt. Soc. Am. B 8, 2414–2419 (1991).
[CrossRef]

C. J. Sansonetti and K.-H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
[CrossRef]

C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?,” in Advances in Laser Science—IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, 1988), pp. 548–553.

Schenck, P. K.

Scholl, T. J.

Smyth, K. C.

Stanley, R. W.

A. Giacchetti, R. W. Stanley, and R. Zalubas, “Proposed secondary-standard wavelengths in the spectrum of thorium,” J. Opt. Soc. Am. 60, 474–489 (1970).
[CrossRef]

W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).

Travis, J. C.

Tzanavaris, P.

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

Valero, F. P. J.

Webb, J. K.

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

Weber, K.-H.

Wood, A.

Zakowicz, E.

Zalubas, R.

Appl. Opt.

Astron. Astrophys.

C. Lovis and F. Pepe, “A new list of thorium and argon spectral lines in the visible,” Astron. Astrophys. 468, 1115–1121 (2007).
[CrossRef]

Astrophys. J. Suppl. Ser.

F. Kerber, G. Nave, and C. J. Sansonetti, “The spectrum of Th-Ar hollow cathode lamps in the 691–5804 nm region: establishing wavelength standards for calibration of infrared spectrographs,” Astrophys. J. Suppl. Ser. 178, 374–381 (2008).
[CrossRef]

S. L. Redman, J. E. Lawler, G. Nave, L. W. Ramsey, and S. Mahadevan, “The infrared spectrum of uranium hollow cathode lamps from 850 nm to 4000 nm: wavenumbers and line identifications from Fourier transform spectra,” Astrophys. J. Suppl. Ser. 195, 24 (2011).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Res. Natl. Bur. Std. Sect. A

W. F. Meggers and R. W. Stanley, “More wavelengths from thorium lamps,” J. Res. Natl. Bur. Std. Sect. A 69, 109–118 (1965).

Mon. Not. R. Astron. Soc.

M. T. Murphy, P. Tzanavaris, J. K. Webb, and C. Lovis, “Selection of ThAr lines for wavelength calibration of echelle spectra and implications for variations in the fine-structure constant,” Mon. Not. R. Astron. Soc. 378, 221–230 (2007).
[CrossRef]

Other

B. A. Palmer, R. A. Keller, and R. Engleman, “An atlas of uranium emission intensities in a hollow cathode discharge,” LASL Rep. LA-8251-MS (Los Alamos Scientific Laboratory, Los Alamos, N. Mex., 1980).

B. A. Palmer and R. Engleman, “Atlas of the thorium spectrum,” LANL Rep. LA-9615 (Los Alamos National Laboratory, Los Alamos, N. Mex., 1983).

J. Cariou and P. Luc, Atlas du Spectre d’Absorption de la Molécule Tellure (Laboratoire Aimé-Cotton, CNRS II, 1980).

Manufactured by Photron Pty, Ltd., Arlington Heights, Ill. Identification of this commercial equipment is made to specify adequately the experiment described in this paper. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.

C. J. Sansonetti, “Precise laser wavelength measurements: what can we learn from classical spectroscopy?,” in Advances in Laser Science—IV, J. L. Gole, D. F. Heller, M. Lapp, and W. C. Stwalley, eds. (American Institute of Physics, 1988), pp. 548–553.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of apparatus.

Fig. 2.
Fig. 2.

Phase correction, in dimensionless units of fractional order number, determined using Doppler-free lines of molecular Te. The dashed curves represent the 99% confidence limit of the polynomial fit.

Fig. 3.
Fig. 3.

Difference between the Th recommended secondary standards of [19] and our current measurements.

Tables (3)

Tables Icon

Table 1. Measured Wave Numbers ( cm 1 ) for Uranium Lines

Tables Icon

Table 2. Measured Wave Numbers ( cm 1 ) for Thorium Lines

Tables Icon

Table 3. Comparison of Measured Wave Numbers ( cm 1 ) for Thorium Lines and Previous Interferometric Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ P + ϵ + δ ( σ ) ] / σ = 2 t
δ ( σ ) = 2 t ( σ u σ s ) ,
σ = σ u + δ ( σ ) / 2 t .
δ σ = 5.24 × 10 7 × σ 0.0115 ,

Metrics