Abstract

The effects of Yb3+ ion concentration on physical, optical, and spectroscopic properties have been studied in a low phonon (590cm1) barium-lanthanum-tellurite glass. Due to the unfeasibility of Judd-Ofelt theory Yb3+-doped systems, the oscillator strength of absorption transition, F27/2F5/22 has been evaluated by using the Smakula equation. The nature of emission from F25/2F7/22 transition of Yb3+ ions is described theoretically by using a rate equation in comparison with experimental results. By applying reciprocity (RM) and Fuchtbauer-Ladenburg methods on emission spectra as well as the excitation random walk model on measured fluorescence lifetimes, the radiation trapping and concentration quenching effects have been discussed. Considering all the spectroscopic and laser performance parameters, an optimum Yb-ion doping concentration (YT1) has been determined, and the gain measurements performed on the sample revealed a flat gain over a broad wavelength range could be achieved even with a low (20%) excitation population density. A comparative study with other hosts revealed the potentiality of the present glass for 1 micron emission.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
    [CrossRef]
  2. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997).
    [CrossRef]
  3. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb: YAG ceramic lasers,” Opt. Lett. 32, 1890–1892 (2007).
    [CrossRef]
  4. H. W. Etzel, H. W. Gandy, and R. J. Ginther, “Stimulated emission of infrared radiation from Ytterbium-activated silica glass,” Appl. Opt. 1, 534–536 (1962).
    [CrossRef]
  5. M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
    [CrossRef]
  6. X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995).
    [CrossRef]
  7. M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
    [CrossRef]
  8. X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
    [CrossRef]
  9. G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
    [CrossRef]
  10. L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
    [CrossRef]
  11. J. Liao, Y. Lin, Y. Chen, Z. Luo, En. Ma, X. Gong, Q. Tan, and Y. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb: YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
    [CrossRef]
  12. V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
    [CrossRef]
  13. E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970).
    [CrossRef]
  14. V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005).
    [CrossRef]
  15. V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996).
    [CrossRef]
  16. M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006).
    [CrossRef]
  17. X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
    [CrossRef]
  18. Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
    [CrossRef]
  19. K. Patek, Glass Lasers (Butterworth, 1970).
  20. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
    [CrossRef]
  21. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
    [CrossRef]
  22. N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
    [CrossRef]
  23. P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
    [CrossRef]
  24. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
    [CrossRef]
  25. M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
    [CrossRef]
  26. L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
    [CrossRef]
  27. L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001).
    [CrossRef]
  28. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
    [CrossRef]
  29. B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
    [CrossRef]
  30. S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
    [CrossRef]
  31. F. Spitzer, Principles of Random Walks (Van Nostrand, 1964).
  32. S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101–144108 (2006).
    [CrossRef]
  33. A. Brenier, “Excited-state dynamics including radiative diffusion in quasi-three level laser crystals: application to Yb-doped Y3Al5O12,” J. Opt. Soc. Am. B 23, 2209–2216 (2006).
    [CrossRef]
  34. M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
    [CrossRef]
  35. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]

2012 (1)

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

2009 (2)

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

2008 (2)

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

2007 (2)

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb: YAG ceramic lasers,” Opt. Lett. 32, 1890–1892 (2007).
[CrossRef]

2006 (4)

A. Brenier, “Excited-state dynamics including radiative diffusion in quasi-three level laser crystals: application to Yb-doped Y3Al5O12,” J. Opt. Soc. Am. B 23, 2209–2216 (2006).
[CrossRef]

J. Liao, Y. Lin, Y. Chen, Z. Luo, En. Ma, X. Gong, Q. Tan, and Y. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb: YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006).
[CrossRef]

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101–144108 (2006).
[CrossRef]

M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006).
[CrossRef]

2005 (3)

V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005).
[CrossRef]

N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
[CrossRef]

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

2004 (1)

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

2003 (4)

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

2001 (1)

L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001).
[CrossRef]

1999 (1)

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

1997 (1)

1996 (1)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996).
[CrossRef]

1995 (1)

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995).
[CrossRef]

1994 (1)

M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
[CrossRef]

1993 (1)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

1986 (1)

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

1983 (1)

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

1982 (1)

B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

1970 (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970).
[CrossRef]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

1962 (1)

Abdel-Baki, M.

M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006).
[CrossRef]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

Barua, P.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

Bell, M. J. V.

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

Blackburn, D. H.

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

Brenier, A.

Cacho, V. D. D.

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

Camy, P.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Cassanjes, F. C.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Chen, D.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Chen, Q.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Chen, Y.

Cheng, J.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Courrol, L. C.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Cronin, D. J.

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

Dai, N.

N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
[CrossRef]

Dai, S.

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

Davis, E. A.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Dimitrov, V.

V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005).
[CrossRef]

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996).
[CrossRef]

Ding, J.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Dong, J.

Doualan, J.-L.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Drescher, M.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Drexhage, M. G.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

Dusterer, S.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Eichhorn, M.

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

El-Diasty, F.

M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006).
[CrossRef]

Etzel, H. W.

Faatz, B.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Feldhaus, J.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Feng, X.

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Fukumoto, M. E.

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

Gandy, H. W.

Ginther, R. J.

Gomes, L.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Gong, X.

Guy, S.

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101–144108 (2006).
[CrossRef]

Hu, H.

L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001).
[CrossRef]

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

Hu, L.

N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
[CrossRef]

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

Huang, Y.

Huber, G.

Ikushima, A. J.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

Jiang, Z.

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

Kaminskii, A. A.

Kassab, L. R. P.

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Komatsu, T.

V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005).
[CrossRef]

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Kuleshov, N. V.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Lagatsky, A. A.

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

Liao, J.

Lin, F.

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

Lin, H.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

Lin, Y.

Lu, P.

N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
[CrossRef]

Luo, Z.

Lynch, J. E.

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

Ma, En.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

Mendes, C. M. S.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Messaddeq, Y.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Mikhailov, V. P.

Moncorgé, R.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Morais, A. S.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Morimoto, N. I.

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

Mott, N. F.

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970).
[CrossRef]

Nunes, L. A. O.

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

Oliveira, S. L.

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

Patek, K.

K. Patek, Glass Lasers (Butterworth, 1970).

Payne, S. A.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Petit, V.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Podlipensky, A. V.

Portier, X.

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

Prandolini, M. J.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Qi, C.

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

Qiao, Y.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Qiu, J.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Quirino, W. G.

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

Ribeiro, S. J. L.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Riedel, R.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Rossbach, J.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Saito, K.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

Sakka, S.

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996).
[CrossRef]

Schulz, M.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Sekiya, E. H.

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

Shirakawa, A.

Sibley, W. A.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Snitzer, E.

M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
[CrossRef]

Sousa, D. F.

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

Spitzer, F.

F. Spitzer, Principles of Random Walks (Van Nostrand, 1964).

Suscavage, M.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

Tan, Q.

Tang, B.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Tavella, F.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Toratani, H.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995).
[CrossRef]

Ueda, K.

Vieira, N. D.

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Vogel, E. M.

M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
[CrossRef]

Wang, G.

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

Wang, M. J.

M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
[CrossRef]

Wang, X.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

Wang, Z.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

Wen, L.

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

Wetter, N. U.

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

Willner, A.

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Xu, S.

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yang, J.

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

Yeh, D. C.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

Zang, L.

L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001).
[CrossRef]

Zhang, Q.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Zhao, X.

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

Zhou, Q.

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

Zou, X.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Eichhorn, “Fluorescence reabsorption and its effects on the local effective excitation lifetime,” Appl. Phys. B 96, 369–377 (2009).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

M. Abdel-Baki and F. El-Diasty, “Optical properties of oxide glasses containing transition metals: case of titanium and chromium containing glasses,” Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

B. F. Aull and H. P. Jenssen, “Vibronic interaction in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[CrossRef]

M. J. Weber, J. E. Lynch, D. H. Blackburn, and D. J. Cronin, “Dependence of the stimulated emission cross section of Yb3+on host glass composition,” IEEE J. Quantum Electron. 19, 1600–1608 (1983).
[CrossRef]

J. Appl. Phys. (1)

V. Dimitrov and S. Sakka, “Electronic oxide polarizability and optical basicity of simple oxides. I,” J. Appl. Phys. 79, 1736–1740 (1996).
[CrossRef]

J. Chem. Phys. (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of trivalent lanthanides and actinides in solution. II,” J. Chem. Phys. 49, 4412–4423 (1968).
[CrossRef]

J. Lumin. (2)

S. Dai, J. Yang, L. Wen, L. Hu, and Z. Jiang, “Effect of radiation trapping on measurement of the spectroscopic properties of Yb3+: phosphate glasses,” J. Lumin. 104, 55–63 (2003).
[CrossRef]

L. C. Courrol, L. R. P. Kassab, A. S. Morais, C. M. S. Mendes, L. Gomes, N. U. Wetter, N. D. Vieira, F. C. Cassanjes, Y. Messaddeq, and S. J. L. Ribeiro, “Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluoroborate or heavy metal oxide,” J. Lumin. 102–103, 106–111 (2003).
[CrossRef]

J. Non-Cryst. Solid (2)

X. Feng, C. Qi, F. Lin, and H. Hu, “Tungsten-tellurite glass: a new candidate medium for Yb3+ doping,” J. Non-Cryst. Solid 256–257, 372–377 (1999).
[CrossRef]

G. Wang, S. Xu, S. Dai, J. Yang, L. Hu, and Z. Jiang, “Thermal stability, spectra and laser properties of Yb: lead–zinc–telluride oxide glasses,” J. Non-Cryst. Solid 336, 102–106 (2004).
[CrossRef]

J. Non-Cryst. Solids (3)

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Radiation effects and optical transitions in Yb3+ doped Barium-Thorium fluoride glass,” J. Non-Cryst. Solids 88, 66–82(1986).
[CrossRef]

P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, “Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass,” J. Non-Cryst. Solids 354, 4760–4764 (2008).
[CrossRef]

L. Zang and H. Hu, “Evaluation of spectroscopic properties of Yb3+ in tetraphosphate glass,” J. Non-Cryst. Solids 292, 108–114 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

Q. Zhang, J. Ding, B. Tang, J. Cheng, Y. Qiao, Q. Zhou, J. Qiu, Q. Chen, and D. Chen, “Optical properties of Yb3+ ions in SiO2─Al2O3─CaF2 glasses,” J. Phys. D 42, 235405 (2009).
[CrossRef]

J. Phys. D: Conden. Matter. (1)

M. J. V. Bell, W. G. Quirino, S. L. Oliveira, D. F. Sousa, and L. A. O. Nunes, “Cooperative luminescence in Yb3+-doped phosphate glasses,” J. Phys. D: Conden. Matter. 15, 4877–4887 (2003).
[CrossRef]

J. Solid State Chem. (1)

V. Dimitrov and T. Komatsu, “Classification of simple oxide glasses: a polarizability approach,” J. Solid State Chem. 178, 831–846 (2005).
[CrossRef]

Opt. Commun. (1)

N. Dai, L. Hu, and P. Lu, “Effects of Yb ion concentration on the spectral properties of lead silica glasses,” Opt. Commun. 253, 151–155 (2005).
[CrossRef]

Opt. Exp. (1)

M. Schulz, R. Riedel, A. Willner, S. Dusterer, M. J. Prandolini, J. Feldhaus, B. Faatz, J. Rossbach, M. Drescher, and F. Tavella, “Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier,” Opt. Exp. 20, 5038–5043 (2012).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (Amsterdam) (3)

M. J. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. (Amsterdam) 3, 187–203 (1994).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis Yb3+, Er3+ and Ho3+ doped Y2O3,” Opt. Mater. (Amsterdam) 24, 103–109 (2003).
[CrossRef]

L. R. P. Kassab, M. E. Fukumoto, V. D. D. Cacho, N. U. Wetter, and N. I. Morimoto, “Spectroscopic properties of Yb3+ doped PbO─Bi2O3─Ga2O3 glasses for IR laser applications,” Opt. Mater. (Amsterdam) 27, 1576–1582 (2005).
[CrossRef]

Philos. Mag. (1)

E. A. Davis and N. F. Mott, “Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors,” Philos. Mag. 22, 903–922 (1970).
[CrossRef]

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964).
[CrossRef]

Phys. Rev. B (3)

V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, “Spectroscopy of Yb3+: CaF2: from isolated centers to clusters,” Phys. Rev. B 78, 085131 (2008).
[CrossRef]

S. Guy, “Modelization of lifetime measurement in the presence of radiation trapping in solid-state materials,” Phys. Rev. B 73, 144101–144108 (2006).
[CrossRef]

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+ doped glasses,” Phys. Rev. B 52, 15889–15897(1995).
[CrossRef]

Physica B (1)

X. Zhao, X. Wang, H. Lin, and Z. Wang, “Electronic polarizability and optical basicity of lanthanide oxides,” Physica B 392, 132–136 (2007).
[CrossRef]

Other (2)

K. Patek, Glass Lasers (Butterworth, 1970).

F. Spitzer, Principles of Random Walks (Van Nostrand, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Linear fit for (αe(n)O2(Vs)αe(Eg)O2); (b) linear fit for (Λn(Vs)ΛEg).

Fig. 2.
Fig. 2.

Optical basicity and optical bandgap variation with sample.

Fig. 3.
Fig. 3.

Optical absorption spectra. (a) Integrated absorption cross section versus sample; (b) deconvoluted absorption spectrum of YT1 sample (inset: energy level diagram); (c) oscillator strength versus sample.

Fig. 4.
Fig. 4.

(a) Excitation; (b–d) emission spectra of Yb3+ doped ba-la-tellurite glasses.

Fig. 5.
Fig. 5.

Variation of emission peak intensities calculated by rate equation (theoretical, N2) and experimental (from measured emission spectra) with Yb3+ ion concentration.

Fig. 6.
Fig. 6.

(a–e) Absorption and emission cross section spectra for different Yb3+ ion concentrations (ACS, absorption across section; RM, emission cross section by RM method; FL, emission cross section by FL method).

Fig. 7.
Fig. 7.

(a)–(e) Deconvoluted measured emission spectra. Insets: energy level diagrams. (f) Emission peak intensity variation with Yb3+ ion concentration.

Fig. 8.
Fig. 8.

Emission spectrum of YT3 sample as a function of sample thickness. Inset: decay profiles fitted by single exponential function.

Fig. 9.
Fig. 9.

Decay curves fitted by single exponential function. Inset: measured lifetime versus Yb3+ ion concentration (red line: fitting curve by using excitation random walk model).

Fig. 10.
Fig. 10.

Gain coefficient spectra of YT1 sample for various inversion populations.

Tables (5)

Tables Icon

Table 1. Various Physical and Optical Properties

Tables Icon

Table 2. σabs(λp), Absorption Cross Section at Pump Wavelength; σpemi, Primary Peak Emission Cross Section, σsemi, Secondary Peak Emission Cross Section; rtc, Radiation Trapping Coefficient

Tables Icon

Table 3. Radiation Trapping and Concentration Quenching Effects with Yb3+ Ion Density Through Excitation Random Walk Model

Tables Icon

Table 4. Spectroscopic and Laser Performance Parameters

Tables Icon

Table 5. Comparative Study of Spectroscopic and Laser Performance Parameters of YT1 Sample with Other Hosts

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

α(υ)=B/hυ(hυEg)n,
Λ=1.67(11αO2),
α(n)O2=[(Vm2.52)(n21n2+2)pα]q1,
α(Eg)O2=[(Vm2.52)(1Eg20)pα]q1,
fe=0.821×1017n(n2+2)2(VN)bandα(E)dE,
dN2dt=RN1ARN2XN22WnrN2,
N2=RNYb(AR+Wnr)=RNYbτf,
N2=N2R=NYbτf.
τf=τf(1ACYb5/3+BCYb3),
Imin=βmin×Isat=(1+ZlZuexp(EZlhcλext1kT))1×(hcλpumpσabs(λpump)τf)=(σabs(λext)σabs(λext)σ+emi(λext))×(hcλpumpσabs(λpump)τf),
Usat=(hνextσabs(λext)+σemi(λext)).
Pmax(hcλextσemiτmin).
αg=βσemi(1β)σabs,

Metrics