Abstract

Stimulated Raman scattering is investigated in a slightly multimode gas-filled hollow-core photonic crystal fiber. Although, second-order Stokes light appears in the fundamental mode below a certain threshold energy, it is observed to switch to a two-lobed higher order mode above this threshold. Conversion to the higher order mode is made possible by the creation of a two-lobed moving coherence wave in the gas that provides both phase-matching and a strong intermodal pump-Stokes overlap. A theoretical model is developed, based on this physical interpretation that agrees quantitatively with the experimental results. The results suggest new opportunities for all-fiber gas-based nonlinear processes requiring phase-matching, such as coherent anti-Stokes Raman scattering, as well as providing a means (for example) of efficiently converting light from a higher order pump mode to a fundamental Stokes mode.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF

B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St.J. Russell
Opt. Express 21(24) 29711-29718 (2013)

Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF

A. V. Chugreev, A. Nazarkin, A. Abdolvand, J. Nold, A. Podlipensky, and P. St.J. Russell
Opt. Express 17(11) 8822-8829 (2009)

Raman amplification of pure side-seeded higher-order modes in hydrogen-filled hollow-core PCF

Jean-Michel Ménard, Barbara M. Trabold, Amir Abdolvand, and Philip St.J. Russell
Opt. Express 23(2) 895-901 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription