Abstract

Stimulated Raman scattering is investigated in a slightly multimode gas-filled hollow-core photonic crystal fiber. Although, second-order Stokes light appears in the fundamental mode below a certain threshold energy, it is observed to switch to a two-lobed higher order mode above this threshold. Conversion to the higher order mode is made possible by the creation of a two-lobed moving coherence wave in the gas that provides both phase-matching and a strong intermodal pump-Stokes overlap. A theoretical model is developed, based on this physical interpretation that agrees quantitatively with the experimental results. The results suggest new opportunities for all-fiber gas-based nonlinear processes requiring phase-matching, such as coherent anti-Stokes Raman scattering, as well as providing a means (for example) of efficiently converting light from a higher order pump mode to a fundamental Stokes mode.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  3. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  4. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
    [CrossRef]
  5. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
    [CrossRef]
  6. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [CrossRef]
  7. A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
    [CrossRef]
  8. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
    [CrossRef]
  9. A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
    [CrossRef]
  10. N. B. Delone and V. P. Krainov, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, 1988).
  11. A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
    [CrossRef]
  12. Z. W. Barber, C. Renner, R. R. Reibel, S. S. Wagemann, W. R. Babbitt, and P. A. Roos, “Conditions for highly efficient anti-Stokes conversion in gas-filled hollow core waveguides,” Opt. Express 18, 7131–7137 (2010).
    [CrossRef]
  13. T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
    [CrossRef]
  14. M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
    [CrossRef]
  15. M. G. Raymer and I. A. Walmsley, “III The quantum coherence properties of stimulated Raman scattering,” in Progress in OpticsE. Wolf, ed., (Elsevier, 1990), Vol. 28, pp. 181–270.
  16. F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
    [CrossRef]
  17. X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
    [CrossRef]
  18. W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
    [CrossRef]
  19. D. A. Long, The Raman Effect (John Wiley, 2002).
  20. D. R. Schultz and M. R. Strayer, “8 computational techniques” in Springer Handbook of Atomic, Molecular, and Optical Physics, G. Drake, ed. (Springer, 2006).
  21. G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
    [CrossRef]
  22. N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [CrossRef]

2011

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

2010

Z. W. Barber, C. Renner, R. R. Reibel, S. S. Wagemann, W. R. Babbitt, and P. A. Roos, “Conditions for highly efficient anti-Stokes conversion in gas-filled hollow core waveguides,” Opt. Express 18, 7131–7137 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

2009

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
[CrossRef]

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
[CrossRef]

2008

2007

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

2006

2005

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

2004

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

1998

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

1981

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

1978

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

1967

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

Abdolvand, A.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
[CrossRef]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[CrossRef]

Babbitt, W. R.

Barber, Z. W.

Benabid, F.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[CrossRef]

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

Berger, H.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Bird, D. M.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Bonamy, J.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

Carraz, O.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Chen, J. S. Y.

Chugreev, A. V.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Couny, F.

F. Couny, O. Carraz, and F. Benabid, “Control of transient regime of stimulated Raman scattering using hollow-core PCF,” J. Opt. Soc. Am. B 26, 1209–1215 (2009).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

Delone, N. B.

N. B. Delone and V. P. Krainov, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, 1988).

Dubernet, M. L.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Euser, T. G.

Fedotov, A. B.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Hedley, T. D.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Hoelzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Joubert, P.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Kaminski, C. F.

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[CrossRef]

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

Kolos, W.

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

Konorov, S. O.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Krainov, V. P.

N. B. Delone and V. P. Krainov, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, 1988).

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Long, D. A.

D. A. Long, The Raman Effect (John Wiley, 2002).

Michaut, X.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Mitrokhin, V. P.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Mostowski, J.

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
[CrossRef]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[CrossRef]

Pearce, G. J.

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

M. G. Raymer and I. A. Walmsley, “III The quantum coherence properties of stimulated Raman scattering,” in Progress in OpticsE. Wolf, ed., (Elsevier, 1990), Vol. 28, pp. 181–270.

Reibel, R. R.

Renner, C.

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Roos, P. A.

Russell, P. S. J.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Russell, P. St. J.

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

T. G. Euser, G. Whyte, M. Scharrer, J. S. Y. Chen, A. Abdolvand, J. Nold, C. F. Kaminski, and P. St. J. Russell, “Dynamic control of higher-order modes inhollow-core photonic crystal fibers,” Opt. Express 16, 17972–17981 (2008).
[CrossRef]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

Saint-Loup, R.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

Scharrer, M.

Schultz, D. R.

D. R. Schultz and M. R. Strayer, “8 computational techniques” in Springer Handbook of Atomic, Molecular, and Optical Physics, G. Drake, ed. (Springer, 2006).

Serebryannikov, E. E.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Strayer, M. R.

D. R. Schultz and M. R. Strayer, “8 computational techniques” in Springer Handbook of Atomic, Molecular, and Optical Physics, G. Drake, ed. (Springer, 2006).

Wagemann, S. S.

Walmsley, I. A.

M. G. Raymer and I. A. Walmsley, “III The quantum coherence properties of stimulated Raman scattering,” in Progress in OpticsE. Wolf, ed., (Elsevier, 1990), Vol. 28, pp. 181–270.

Whyte, G.

Wolniewicz, L.

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

Zheltikov, A. M.

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Appl. Phys. Lett.

A. C. Eckbreth, “BOXCARS: Crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423(1978).
[CrossRef]

J. Chem. Phys.

X. Michaut, R. Saint-Loup, H. Berger, M. L. Dubernet, P. Joubert, and J. Bonamy, “Investigations of pure rotational transitions of H2 self-perturbed and perturbed by Measurement He. I., modeling, and quantum calculations,” J. Chem. Phys. 109, 951 (1998).
[CrossRef]

W. Kolos and L. Wolniewicz, “Polarizability of the hydrogen molecule,” J. Chem. Phys. 46, 1426 (1967).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. A

M. G. Raymer and J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981).
[CrossRef]

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 79, 031805 (2009).
[CrossRef]

A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Phys. Rev. A 70, 045802 (2004).
[CrossRef]

Phys. Rev. B

G. J. Pearce, T. D. Hedley, and D. M. Bird, “Adaptive curvilinear coordinates in a plane-wave solution of Maxwell’s equations in photonic crystals,” Phys. Rev. B 71, 195108 (2005).
[CrossRef]

Phys. Rev. Lett.

N. Y. Joly, J. Nold, W. Chang, P. Hoelzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef]

A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010).
[CrossRef]

A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009).
[CrossRef]

Science

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Other

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

N. B. Delone and V. P. Krainov, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, 1988).

M. G. Raymer and I. A. Walmsley, “III The quantum coherence properties of stimulated Raman scattering,” in Progress in OpticsE. Wolf, ed., (Elsevier, 1990), Vol. 28, pp. 181–270.

D. A. Long, The Raman Effect (John Wiley, 2002).

D. R. Schultz and M. R. Strayer, “8 computational techniques” in Springer Handbook of Atomic, Molecular, and Optical Physics, G. Drake, ed. (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Transmission window of the fiber and near-field optical micrographs of the LP01 mode profiles of the first anti-Stokes, pump, first Stokes, and second Stokes signals.

Fig. 2.
Fig. 2.

Schematic of the experimental setup. PBS: polarizing beam splitter, M: mirror, OBJ: objective lens, PD: fast photodiode, BS: beam-splitter, λ/2: half-wave plate, λ/4: quarter-wave plate.

Fig. 3.
Fig. 3.

Output energies of the residual pump (open blue circles), first Stokes (filled green squares), and second Stokes (filled pink circles) as a function of the input pump energy. They are normalized to the total transmitted energy. The three different regions are discussed in the text.

Fig. 4.
Fig. 4.

Temporal structure of the residual pump, first, and second Stokes pulses. (a) Input pulse energy 8 μJ and (b) 13 μJ. The black dashed curve shows the temporal intensity profile of the input pump pulse. (c), (d), (e), and (f) show the results of numerical simulations, the gray-hatched and orange-shaded areas representing the modulus of the even and odd coherence waves in the system.

Fig. 5.
Fig. 5.

Near-field images of (a) residual pump at 8 μJ; (b) first Stokes at 8 μJ, and the second Stokes; (c) just above the threshold at 11 μJ and (d) for higher input energies of 20 μJ.

Fig. 6.
Fig. 6.

(a) Scanning electron micrograph of the HC-PCF and (b) idealized structure used to calculate the propagation constants of the various fiber modes.

Fig. 7.
Fig. 7.

Simulated dispersion curves for the LP01 (green) and LP11 (purple) modes of the HC-PCF used in the experiments, illustrating energy and momentum conservation. Intramodal SRS: Cascaded generation of the s101 and s201 signals involves independent coherence waves ph1 and ph2. Intermodal SRS: Generation of the Stokes components in the higher-order mode LP11 involves phase-matching via coherence wave ph3.

Fig. 8.
Fig. 8.

Numerical simulations of spatiotemporal evolution of the intensities of the pump (p) and first and second Stokes (s1 and s2) signals in the LP01 (upper row) and LP11 (lower row) modes. Note that the p11 signal is always negligible in this case.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λcoh=vG/fR,
eχσ(z,τ)=Eχσ(z,τ)exp(iβχσz)=Eχσ(z,τ)qχσ,
(z+12αp01)Ep01(z,τ)=iωp2r13N2ϵ0c2βp01(Qevenqp*01qs101Es101+Qoddqp*01qs111Es111)(z+12αs101)Es101(z,τ)=iωs12r13N2ϵ0c2βs101(Qeven*qs1*01qp01Ep01+Qevenqs1*01qs201Es201+Qoddqs1*01qs211Es211)(z+12αs111)Es111(z,τ)=iωs12r13N2ϵ0c2βs111(Qodd*qs1*11qp01Ep01+Qoddqs1*01qs201Es201+Qevenqs1*11qs211Es211)(z+12αs201)Es201(z,τ)=iωs22r13N2ϵ0c2βs201(Qeven*qs1*01qs101Es101+Qodd*qs2*01qs111Es111)(z+12αs211)Es211(z,τ)=iωs22r13N2ϵ0c2βs211(Qodd*qs2*11qs101Es101+Qeven*qs2*11qs111Es111),
(τ+1T2)Qeven=ir13n(z,τ)(Ep01Es1*01qp01qs1*01+Es101Es2*01qs101qs2*01+Es111Es2*11qs111qs2*11)=ir13nIeven(τ+1T2)Qodd=ir13n(z,τ)(Ep01Es1*11qp01qs1*11+Es101Es2*11qs101qs2*11+Es111Es2*01qs111qs2*01)=ir13nIodd,
(τ+1T1)n(z,τ)n0T1=4r13I{Ieven*Qeven+Iodd*Qodd}.
n(z,τ0)=n0=1Qeven(z,τ0)=Qodd(z,τ0)=0Eχσ(z,τ0)=Eχσ(z0,τ)=EχvacEp01(z0,τ)=E0(τ),

Metrics