Abstract

We have experimentally and theoretically studied the causes of the transparency spectra of the 5S1/2-5P3/2-4D5/2 and 5S1/2-5P3/2-5D5/2 transitions of Rb87 atoms. Although, the two-photon resonance of the 5S1/2-5P3/2-4D5/2 transition was not Doppler-free in an Rb vapor, we observed the transparency phenomenon in this transition. The main cause of the transparency of the 5S1/2-5P3/2-4D5/2 transition was double-resonance optical pumping (DROP) due to two-step excitation, and that of the 5S1/2-5P3/2-5D5/2 transition was DROP and electromagnetically induced transparency due to two-photon coherence. We confirmed the experimental results with theoretical results calculated using the density matrix equations considering all the degenerate magnetic sublevels of both transitions of the Rb87 atoms.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef]
  2. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [CrossRef]
  3. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [CrossRef]
  4. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [CrossRef]
  5. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
    [CrossRef]
  6. M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  7. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
    [CrossRef]
  8. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  9. G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
    [CrossRef]
  10. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [CrossRef]
  11. M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  12. H. S. Moon, L. Lee, and J. B. Kim, “Coupling intensity effects in ladder-type electromagnetically induced transparency of Rb atom,” J. Opt. Soc. Am. B 22, 2529–2533 (2005).
    [CrossRef]
  13. S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
    [CrossRef]
  14. H. S. Moon, L. Lee, and J. B. Kim, “Double-resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24, 2157–2164 (2007).
    [CrossRef]
  15. H.-R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
    [CrossRef]
  16. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008).
    [CrossRef]
  17. H.-R. Noh and H. S. Moon, “Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system,” Opt. Express 19, 11128–11137 (2011).
    [CrossRef]
  18. M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
    [CrossRef]
  19. D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
    [CrossRef]
  20. W. K. Lee, H. S. Moon, and H. S. Suh, “Measurement of the absolute energy level and hyperfine structure of the Rb874D5/2 state,” Opt. Lett. 32, 2810–2812 (2007).
    [CrossRef]
  21. H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
    [CrossRef]
  22. H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
    [CrossRef]
  23. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010).
    [CrossRef]
  24. P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

2012

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

2011

2010

2009

H.-R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

2008

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef]

D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
[CrossRef]

H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008).
[CrossRef]

2007

2005

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

H. S. Moon, L. Lee, and J. B. Kim, “Coupling intensity effects in ladder-type electromagnetically induced transparency of Rb atom,” J. Opt. Soc. Am. B 22, 2529–2533 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2004

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[CrossRef]

1996

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef]

G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef]

1995

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

1991

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Adams, C. S.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef]

Berman, P. R.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

Boller, K.-J.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Chang-Hasnain, C. J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Chuang, S. L.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Clark, C. W.

M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Dunn, M. H.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Fujisawa, A.

Fulton, D. J.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Harris, S. E.

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Harshawardhan, W.

G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef]

Hayashi, N.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Jin, S. Z.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Kido, H.

Kim, J.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Kim, J. B.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef]

Ku, P. C.

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Lee, L.

Lee, W. K.

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Malinovsky, V. S.

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Mitsunaga, M.

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Moon, H. S.

Moseley, R. R.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Noh, H.-R.

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

H.-R. Noh and H. S. Moon, “Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system,” Opt. Express 19, 11128–11137 (2011).
[CrossRef]

H.-R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

Orozco, L. A.

D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
[CrossRef]

Perez Galvan, A.

D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
[CrossRef]

Safronova, M. S.

M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Sheng, D.

D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
[CrossRef]

Shepherd, S.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Suh, H. S.

Takahashi, K.

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

Williams, C. J.

M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[CrossRef]

Xiao, M.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

Appl. Phys. B

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004).
[CrossRef]

Nature

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[CrossRef]

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394–5399 (1996).
[CrossRef]

H.-R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009).
[CrossRef]

M. S. Safronova, C. J. Williams, and C. W. Clark, Phys. Rev. A 69, 022509 (2004).
[CrossRef]

D. Sheng, A. Perez Galvan, and L. A. Orozco, Phys. Rev. A 78, 062506 (2008).
[CrossRef]

H.-R. Noh and H. S. Moon, “Transmittance signal in real ladder-type atoms,” Phys. Rev. A 85, 033817 (2012).
[CrossRef]

H.-R. Noh and H. S. Moon, “Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system,” Phys. Rev. A 84, 053827 (2011).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: a comparison of V, Lambda, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
[CrossRef]

Phys. Rev. Lett.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

G. S. Agarwal and W. Harshawardhan, “Inhibition and Enhancement of Two Photon Absorption,” Phys. Rev. Lett. 77, 1039–1042 (1996).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other

P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and Quantum Optics (Princeton University, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Energy level diagram for the 5S1/2-5P3/2-4D5/2 and 5S1/2-5P3/2-5D5/2 transitions of Rb87 (I=3/2). The total angular momentum values are given to the left of the levels; (b) Diagram for the spontaneous decay paths between the hyperfine states in the 5S1/2-5P3/2-4D5/2 (or 5D5/2) transition.

Fig. 2.
Fig. 2.

Positions of the Autler-Townes absorption (red curves) and the two-photon resonance (dashed blue curve) as functions the atomic velocity for (a) a coupling laser of 776 nm (5P3/2-5D5/2 transition) and a probe laser of 780 nm (5S1/2-5P3/2 transition) and (b) a coupling laser of 1529 nm (5P3/2-4D5/2 transition) and a probe laser of 780 nm (5S1/2-5P3/2 transition).

Fig. 3.
Fig. 3.

(a) Typical EIT spectrum (blue curve) of the 5S1/2-5P3/2-5D5/2 transition (with a coupling laser of 776 nm) transition and (b) transparency spectrum (red curve) of the 5S1/2-5P3/2-4D5/2 transition (with a coupling laser of 1529 nm), and saturated absorption spectrum (SAS) of the probe laser (gray curve) for the 5S1/2-5P3/2 transition.

Fig. 4.
Fig. 4.

(a) Magnified view of the transparency spectrum of the 5S1/2-5P3/2-4D5/2 transition in Fig. 3 and (b) same spectrum with the Doppler background eliminated.

Fig. 5.
Fig. 5.

Transition configurations for counter-propagating probe and coupling lasers interacting with two different velocity groups of atoms presented using simple energy diagrams of the 5S1/2(F=2)-5P3/2(F=3)-4D5/2(F=2,3,4) transition: (a) 5P3/2(F=3)-4D5/2(F=2) transition and (b) 5P3/2(F=3)-4D5/2(F=4) transition.

Fig. 6.
Fig. 6.

(a) Experimental transmittance spectrum and (b) numerically calculated transmittance spectra of the 5S1/2-5P3/2-5D5/2 transition.

Fig. 7.
Fig. 7.

(a) Experimental transmittance spectrum and (b) numerically calculated transmittance spectra of the 5S1/2-5P3/2-4D5/2 transition.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ωp=kp·v12kC·v±12Ω2+(kC·v)2,
ωtwo=(kpkC)·v,
δp+kpv=0,
kCv+δC=Δ23,0,Δ34,

Metrics