Abstract

The gain enhancement properties of a fiber optical parametric amplifier (FOPA) are investigated by inserting a phase-shifted fiber Bragg grating (PS-FBG) between two highly nonlinear dispersion shift fibers (HNL-DSFs). The PS-FBG is adopted to reduce the power and change the phase of the idler wave, and thus to change the phase mismatch parameter and relative phase difference among the four involved waves in four-wave mixing (FWM). The influence of reflectivity and phase shift of the PS-FBG on the gain properties of FOPA is focused on. It is shown that, with the introduction of PS-FBG, the gain of FOPA is enhanced significantly. With the increase of reflectivity of PS-FBG, the gain increases first and reaches its maximum at the optimal reflectivity. Besides, the π-phase shift contributes to the highest gain of FOPA. The effect of insertion loss is also considered. The FOPA with PS-FBG provides a new tool to obtain gain enhancement, which is extremely useful for the optical communication system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [CrossRef]
  2. H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19, 6648–6656(2011).
    [CrossRef]
  3. J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
    [CrossRef]
  4. C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
    [CrossRef]
  5. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007).
    [CrossRef]
  6. Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
    [CrossRef]
  7. A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008).
    [CrossRef]
  8. L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
    [CrossRef]
  9. Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
    [CrossRef]
  10. J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
    [CrossRef]
  11. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” J. Opt. Soc. Am. B 20, 1532–1537 (2003).
    [CrossRef]
  12. J. Kim, Ö. Boyraz, J. H. Lim, and M. N. Islam, “Gain enhancement in cascaded fiber parametric amplifier with quasi-phase matching: theory and experiment,” J. Lightwave Technol. 19, 247–251 (2001).
    [CrossRef]
  13. D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B 28, 2848–2854 (2011).
    [CrossRef]
  14. F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
    [CrossRef]
  15. H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
    [CrossRef]
  16. Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009).
    [CrossRef]
  17. M. Gao, C. Jiang, W. Hu, and J. Wang, “Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm,” Opt. Express 12, 5603–5613 (2004).
    [CrossRef]
  18. K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
    [CrossRef]
  19. T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
    [CrossRef]
  20. M. E. Mahric, F. S. Yang, M.-C. Ho, and L. G. Kazovsky, “High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,” J. Lightwave Technol. 17, 210–215 (1999).
    [CrossRef]
  21. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  23. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26, 10–12 (2001).
    [CrossRef]
  24. C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
    [CrossRef]
  25. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [CrossRef]
  26. K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
    [CrossRef]
  27. K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
    [CrossRef]
  28. R. Zengerle and O. Lemiger, “Phase-shifted Bragg grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
    [CrossRef]
  29. F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996).
    [CrossRef]

2011 (4)

H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19, 6648–6656(2011).
[CrossRef]

D. Bigourd, L. Lago, A. Kudlinski, E. Hugonnot, and A. Mussot, “Dynamics of fiber optical parametric chirped pulse amplifiers,” J. Opt. Soc. Am. B 28, 2848–2854 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

2010 (3)

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[CrossRef]

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

2009 (2)

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009).
[CrossRef]

2008 (1)

A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008).
[CrossRef]

2007 (1)

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007).
[CrossRef]

2006 (3)

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
[CrossRef]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
[CrossRef]

2005 (1)

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

2004 (2)

M. Gao, C. Jiang, W. Hu, and J. Wang, “Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm,” Opt. Express 12, 5603–5613 (2004).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

2003 (2)

L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, “Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement,” J. Opt. Soc. Am. B 20, 1532–1537 (2003).
[CrossRef]

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

2001 (3)

1999 (1)

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

1996 (1)

F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996).
[CrossRef]

1995 (1)

R. Zengerle and O. Lemiger, “Phase-shifted Bragg grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[CrossRef]

Agrawal, G. P.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alic, N.

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Andrekson, P. A.

J. Kakande, C. Lundström, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Detailed characterization of a fiber-optic parametric amplifier in phase-sensitive and phase-insensitive operation,” Opt. Express 18, 4130–4137 (2010).
[CrossRef]

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

Bakhti, F.

F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996).
[CrossRef]

Bigourd, D.

Bogris, A.

A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008).
[CrossRef]

Boyraz, Ö.

Brès, C.-S.

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Cao, H.

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

Chen, G.

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

Cheung, K.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Chui, P.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Croussore, K.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007).
[CrossRef]

Dai, Y. T.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Ford, J.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

Gao, M.

Gui, L.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Hang, D.

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

Ho, M.-C.

Hong, X. B.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Hu, W.

Hugonnot, E.

Inoue, K.

Islam, M. N.

Jiang, C.

Jiang, R.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

Jopson, R.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

Kakande, J.

Kalogerakis, G.

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

Karlsson, M.

Kazovsky, L. G.

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

M. E. Mahric, F. S. Yang, M.-C. Ho, and L. G. Kazovsky, “High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation,” J. Lightwave Technol. 17, 210–215 (1999).
[CrossRef]

Kim, J.

Knudsen, S. N.

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

Kudlinski, A.

Kuo, B. P.-P.

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Lago, L.

Lantz, E.

Lemiger, O.

R. Zengerle and O. Lemiger, “Phase-shifted Bragg grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[CrossRef]

Li, G.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007).
[CrossRef]

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

Li, Q.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009).
[CrossRef]

Lim, J. H.

Lin, J. T.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Lin, Q.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

Lundström, C.

Luo, B.

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Mahric, M. E.

Maillotte, H.

Marhic, M. E.

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

Marki, C. F.

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

McKinstrie, C. J.

H. Steffensen, J. R. Ott, K. Rottwitt, and C. J. McKinstrie, “Full and semi-analytic analyses of two-pump parametric amplification with pump depletion,” Opt. Express 19, 6648–6656(2011).
[CrossRef]

C. J. McKinstrie and M. G. Raymer, “Four-wave-mixing cascades near the zero-dispersion frequency,” Opt. Express 14, 9600–9610 (2006).
[CrossRef]

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

Mukai, T.

Mussot, A.

Olsson, B.-E.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
[CrossRef]

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Ott, J. R.

Pan, W.

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Provino, L.

Radic, S.

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

Raymer, M. G.

Richardson, D. J.

Rottwitt, K.

Sansonetti, P.

F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996).
[CrossRef]

Shimizu, K.

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

Steffensen, H.

Sun, J.

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

Sylvestre, T.

Syvridis, D.

A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008).
[CrossRef]

Tong, Z.

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
[CrossRef]

Uesaka, K.

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

Wang, D. P.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Wang, J.

Wen, K.

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

Wiberg, A.

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

Wong, K. K. Y.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

Wu, J.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Xu, K.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Yaman, F.

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

Yan, L.

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

Yang, F. S.

Yang, S.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Zengerle, R.

R. Zengerle and O. Lemiger, “Phase-shifted Bragg grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[CrossRef]

Zhang, J. Y.

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Zhou, Y.

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

Zhu, H.

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Zhu, Y.

Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009).
[CrossRef]

Zou, X.

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Electron. Lett. (1)

F. Bakhti and P. Sansonetti, “Wide bandwidth low loss and highly rejective doubly phase-shifted UV-written fiber bandpass filter,” Electron. Lett. 32, 581–582 (1996).
[CrossRef]

Fiber Integr. Opt. (2)

H. Cao, J. Sun, G. Chen, and D. Hang, “A novel dispersionless comb gain equalizer for fiber optical parametric amplifier,” Fiber Integr. Opt. 25, 279–286 (2006).
[CrossRef]

Q. Li and Y. Zhu, “Theoretical analysis of the polarization- and frequency-dependent gain for fiber optical parametric amplifier,” Fiber Integr. Opt. 28, 288–300 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

Q. Lin, R. Jiang, C. F. Marki, C. J. McKinstrie, R. Jopson, J. Ford, G. P. Agrawal, and S. Radic, “40  Gb/s optical switching and wavelength multicasting in a two-pump parametric device,” IEEE Photon. Technol. Lett. 17, 2376–2378 (2005).
[CrossRef]

J. Li, J. Hansryd, P.-O. Hedekvist, P. A. Andrekson, and S. N. Knudsen, “300  Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification,” IEEE Photon. Technol. Lett. 13, 987–989 (2001).
[CrossRef]

C.-S. Brès, A. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Multicasting of 320  Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1002–1004(2009).
[CrossRef]

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19, 864–866 (2007).
[CrossRef]

Y. Zhou, Q. Li, K. Cheung, S. Yang, P. Chui, and K. K. Y. Wong, “All-fiber-based ultrashort pulse generation and chirped pulse amplification through parametric processes,” IEEE Photon. Technol. Lett. 22, 1330–1332 (2010).
[CrossRef]

F. Yaman, Q. Lin, S. Radic, and G. P. Agrawal, “Impact of dispersion fluctuation on dual-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett. 16, 1292–1294(2004).
[CrossRef]

K. K. Y. Wong, K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, “Continuous-wave fiber optical parametric amplifier with 60 dB gain using a novel two-segment design,” IEEE Photon. Technol. Lett. 15, 1707–1709 (2003).
[CrossRef]

T. Torounidis, P. A. Andrekson, and B.-E. Olsson, “Fiber-optical parametric amplifier with 70 dB gain,” IEEE Photon. Technol. Lett. 18, 1194–1196 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

L. Gui, K. Xu, D. P. Wang, J. Wu, X. B. Hong, Y. T. Dai, J. Y. Zhang, and J. T. Lin, “Character analysis of slow light with communication waveband in fiber optical parametric amplifier,” Opt. Commun. 283, 4350–4357 (2010).
[CrossRef]

Opt. Eng. (1)

K. Wen, L. Yan, W. Pan, and B. Luo, “Design of fiber Bragg gratings with arbitrary reflective spectrum,” Opt. Eng. 50, 054003–054004 (2011).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (1)

A. Bogris and D. Syvridis, “40  Gb/s all-optical regeneration based on the pump depletion effect in fiber parametric amplification,” Opt. Fiber Technol. 14, 63–71 (2008).
[CrossRef]

Opt. Lett. (1)

Optik (1)

K. Wen, L. Yan, W. Pan, B. Luo, X. Zou, and H. Zhu, “Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings,” Optik 122, 2249–2251 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[CrossRef]

Other (2)

M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic illustration of FOPA with PS-FBG inserted in the two HNL-DSFs. C, optical coupler; HNL-DSF, highly nonlinear dispersion-shifted fiber; PS-FBG, phase-shifted fiber Bragg grating; (b) Structure of the PS-FBG. Λ, the period of the grating.

Fig. 2.
Fig. 2.

Reflectivity of the PS-FBG at the idler wavelength; there is a π phase shift at the wavelength of idler.

Fig. 3.
Fig. 3.

Evolution of the gain in power, κ, and sinθ as a function of the fiber length. (a) power of pump1 and pump2 Pp and Pq; (b) phase mismatch parameter κ; (c) sinθ; (d) idler power Pi; (e) signal power Ps.

Fig. 4.
Fig. 4.

The gain (solid curve) and maximum gain (dashed curve) as functions of (a) reflectivity and (b) phase shift, for the FOPA with PS-FBG, with Pp=Pq=33dBm, λp=1480nm, λq=1620nm.

Fig. 5.
Fig. 5.

The gain (solid curve) and maximum gain (dashed curve) as functions of (a) reflectivity and (b) phase shift, for the FOPA with PS-FBG, with Pp=Pq=33dBm, λp=1478nm, λq=1622nm.

Fig. 6.
Fig. 6.

Influence of insertion loss to the signal gain. (a) The gain as a function of insertion loss; (b) the gain as a function of fiber length for different insertion loss values.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dApdz=iγ{[|Ap|2+2(|Aq|2+|As|2+|Ai|2)]Ap+2Aq*AsAieiΔβz},
dAqdz=iγ{[|Aq|2+2(|Ap|2+|As|2+|Ai|2)]Aq+2Ap*AsAieiΔβz},
dAsdz=iγ{[|As|2+2(|Ap|2+|Aq|2+|Ai|2)]As+2Ai*ApAqeiΔβz},
dAidz=iγ{[|Ai|2+2(|Ap|2+|Aq|2+|As|2)]Ai+2As*ApAqeiΔβz},
Δβ=β(2)((ωsωc)2ωd2)+112β(4)((ωsωc)4ωd4).
κ=Δβ+γ(Pp+PqPsPi),
dPpdz=4γ(PpPqPsPi)1/2sinθ,
dPqdz=4γ(PpPqPsPi)1/2sinθ,
dPsdz=4γ(PpPqPsPi)1/2sinθ,
dPidz=4γ(PpPqPsPi)1/2sinθ,
dθdz=Δβ+γ(Pp+PqPsPi)+2γ[(PpPqPi/Ps)1/2+(PpPqPs/Pi)1/2(PqPsPi/Pp)1/2(PpPsPi/Pq)1/2]cosθ,
θ(z)=Δβz+ϕs(z)+ϕi(z)ϕp(z)ϕq(z).
A2(j)in(z)=A1(j)out(z)eiϕ(j)αins,j=p,q,s,
A2iin(z)=1RA1iout(z)ei(ϕ(i)+Δϕ)αins,
Δn(z)=Δn0sin(2πΛz+Δϕ(z)),

Metrics