Abstract

We calculate intensity autocorrelations and cross correlations for the light transmitted from a system consisting of a three-level Λ-type atom inside an optical cavity that supports two orthogonally polarized modes with one mode of the cavity weakly driven on resonance. We also include damping of the cavity modes and spontaneous emission from the atom using the framework of quantum trajectory theory. The correlation functions are compared with those of a two-level atom/cavity system as the coupling to the third level is increased, and we find a transition from photon bunching to photon antibunching. The three-level model allows the atom to couple to both field modes for which we calculate intensity cross correlations that exhibit nonclassical behaviors. Finally, we discuss the lack of entanglement between the field modes despite their common coupling to the same atom and the presence of atom-field entanglement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Rice and H. J. Carmichael, “Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit,” IEEE J. Quantum Electron. 24, 1351–1366 (1988).
    [CrossRef]
  2. H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
    [CrossRef]
  3. R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
    [CrossRef]
  4. P. Rice, J. Gea-Banacloche, M. Terraciano, D. Freimund, and L. Orozco, “Steady state entanglement in cavity QED,” Opt. Express 14, 4514–4524 (2006).
    [CrossRef]
  5. J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
    [CrossRef]
  6. M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
    [CrossRef]
  7. D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
    [CrossRef]
  8. P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
    [CrossRef]
  9. D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
    [CrossRef]
  10. M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
    [CrossRef]
  11. M. Kronnenwett, A. S. Parkins, and H. J. Carmichael, “Photon correlations in two-mode cavity QED,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (Optical Society of America, 2008), pp. 470–471.
  12. L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
    [CrossRef]
  13. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
    [CrossRef]
  14. S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
    [CrossRef]
  15. C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
    [CrossRef]
  16. S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
    [CrossRef]
  17. T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
    [CrossRef]
  18. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
    [CrossRef]
  19. B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
    [CrossRef]
  20. D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
    [CrossRef]
  21. S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
    [CrossRef]
  22. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
    [CrossRef]
  23. H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).
  24. H. J. Carmichael, An Open Systems Approach to Quantum Optics, Vol. 18, Lecture Notes in Physics, New Series: Monographs (Springer, 1993).
  25. M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986).
    [CrossRef]
  26. J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
    [CrossRef]
  27. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [CrossRef]

2010 (2)

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

2009 (4)

D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

2008 (1)

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

2007 (2)

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
[CrossRef]

2006 (1)

2005 (2)

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

2004 (1)

J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
[CrossRef]

2003 (1)

L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

1999 (3)

R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
[CrossRef]

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

1998 (1)

S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
[CrossRef]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

1996 (1)

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

1995 (1)

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

1991 (1)

H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
[CrossRef]

1988 (1)

P. R. Rice and H. J. Carmichael, “Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit,” IEEE J. Quantum Electron. 24, 1351–1366 (1988).
[CrossRef]

1986 (1)

M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986).
[CrossRef]

Barberis-Blostein, P.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

Bennett, C. H.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

Boca, A.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

Bochmann, J.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Boozer, A. D.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

Bose, S.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

Brecha, R. J.

R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
[CrossRef]

H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
[CrossRef]

Burt, T. C.

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

Cabrillo, C.

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

Cahoon, E. J.

D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
[CrossRef]

Carmichael, H. J.

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
[CrossRef]

P. R. Rice and H. J. Carmichael, “Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit,” IEEE J. Quantum Electron. 24, 1351–1366 (1988).
[CrossRef]

M. Kronnenwett, A. S. Parkins, and H. J. Carmichael, “Photon correlations in two-mode cavity QED,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (Optical Society of America, 2008), pp. 470–471.

H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

H. J. Carmichael, An Open Systems Approach to Quantum Optics, Vol. 18, Lecture Notes in Physics, New Series: Monographs (Springer, 1993).

Chou, C. W.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Cirac, J. I.

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Clemens, J. P.

de Riedmatten, H.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

DiVincenzo, D. P.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

Duan, L.-M.

L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Felinto, D.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Fernandez, A.

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

Freimund, D.

Freimund, D. L.

Fritzsche, S.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

G.-Fernandez, P.

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

Gardiner, S. A.

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Gea-Banacloche, J.

P. Rice, J. Gea-Banacloche, M. Terraciano, D. Freimund, and L. Orozco, “Steady state entanglement in cavity QED,” Opt. Express 14, 4514–4524 (2006).
[CrossRef]

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

Gonta, D.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

Guo, G.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

Jin, C.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

Jing, J.

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

Kimble, H. J.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Knight, P. L.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

Kronnenwett, M.

M. Kronnenwett, A. S. Parkins, and H. J. Carmichael, “Photon correlations in two-mode cavity QED,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (Optical Society of America, 2008), pp. 470–471.

Kuzmich, A.

L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

Leach, J.

J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
[CrossRef]

Li, C.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

Miller, R.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

Moehring, D. L.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Mucke, M.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Muller, T.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Norris, D. G.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

Northup, T. E.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

Olson Knell, R.

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
[CrossRef]

Orozco, L.

Orozco, L. A.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
[CrossRef]

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

Parkins, A. S.

M. Kronnenwett, A. S. Parkins, and H. J. Carmichael, “Photon correlations in two-mode cavity QED,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (Optical Society of America, 2008), pp. 470–471.

Pellizari, T.

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Plenio, M. B.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

Polyakov, S. V.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

Radtke, T.

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

Reid, M. D.

M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986).
[CrossRef]

Rempe, G.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Rice, P.

P. Rice, J. Gea-Banacloche, M. Terraciano, D. Freimund, and L. Orozco, “Steady state entanglement in cavity QED,” Opt. Express 14, 4514–4524 (2006).
[CrossRef]

J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
[CrossRef]

Rice, P. R.

M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
[CrossRef]

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
[CrossRef]

H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
[CrossRef]

P. R. Rice and H. J. Carmichael, “Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit,” IEEE J. Quantum Electron. 24, 1351–1366 (1988).
[CrossRef]

Smolin, J. A.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

Specht, H. P.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Strimbu, C.

J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
[CrossRef]

Terraciano, M.

Terraciano, M. L.

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

M. L. Terraciano, R. Olson Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett. 32, 982–984 (2007).
[CrossRef]

van Enk, S. J.

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
[CrossRef]

Vedral, V.

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

Walls, D. F.

M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986).
[CrossRef]

Weber, B.

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Wootters, W. K.

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

Xiao, M.

R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
[CrossRef]

Yang, S.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

Zhang, S.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

Zoller, P.

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

Zou, X.

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Rice and H. J. Carmichael, “Single-atom cavity-enhanced absorption. I. Photon statistics in the bad-cavity limit,” IEEE J. Quantum Electron. 24, 1351–1366 (1988).
[CrossRef]

J. Opt. B (1)

J. Leach, C. Strimbu, and P. Rice, “Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems,” J. Opt. B 6, S722–S729 (2004).
[CrossRef]

Nat. Phys. (1)

M. L. Terraciano, R. Olson Knell, D. G. Norris, J. Jing, A. Fernandez, and L. A. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5, 480–484 (2009).
[CrossRef]

Nature (1)

C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005).
[CrossRef]

New J. Phys. (1)

P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael, “From quantum feedback to probabilistic error correction: manipulation of quantum beats in cavity QED,” New J. Phys. 12, 023002 (2010).
[CrossRef]

Opt. Commun. (1)

H. J. Carmichael, R. J. Brecha, and P. R. Rice, “Quantum interference and collapse of the wavefunction in cavity QED,” Opt. Commun. 82, 73–79 (1991).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (8)

D. G. Norris, E. J. Cahoon, and L. A. Orozco, “Atom detection in a two-mode optical cavity with intermediate coupling: autocorrelation studies,” Phys. Rev. A 80, 043830 (2009).
[CrossRef]

R. J. Brecha, P. R. Rice, and M. Xiao, “N two-level atoms in a driven optical cavity: quantum dynamics of forward photon scattering for weak incident fields,” Phys. Rev. A 59, 2392–2417 (1999).
[CrossRef]

L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with ‘hot’ trapped atoms,” Phys. Rev. A 67, 032305 (2003).
[CrossRef]

C. Cabrillo, J. I. Cirac, P. G.-Fernandez, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[CrossRef]

D. Gonta, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009).
[CrossRef]

C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[CrossRef]

M. D. Reid and D. F. Walls, “Violations of classical inequalities in quantum optics,” Phys. Rev. A 34, 1260–1276 (1986).
[CrossRef]

Phys. Rev. Lett. (7)

S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[CrossRef]

T. Pellizari, S. A. Gardiner, J. I. Cirac, and P. Zoller, “Decoherence, continuous observation, and quantum computing: a cavity QED model,” Phys. Rev. Lett. 75, 3788–3791 (1995).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

B. Weber, H. P. Specht, T. Muller, J. Bochmann, M. Mucke, D. L. Moehring, and G. Rempe, “Photon-photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997).
[CrossRef]

J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco, “Entangled and disentangled evolution for a single atom in a driven cavity,” Phys. Rev. Lett. 94, 053603 (2005).
[CrossRef]

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 150, 123602 (2010).
[CrossRef]

Science (1)

S. J. van Enk, J. I. Cirac, and P. Zoller, “Photonic channels for quantum communication,” Science 279, 205–208 (1998).
[CrossRef]

Other (3)

M. Kronnenwett, A. S. Parkins, and H. J. Carmichael, “Photon correlations in two-mode cavity QED,” in Coherence and Quantum Optics IX, N. P. Bigelow, J. H. Eberly, and C. R. Stroud, eds. (Optical Society of America, 2008), pp. 470–471.

H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

H. J. Carmichael, An Open Systems Approach to Quantum Optics, Vol. 18, Lecture Notes in Physics, New Series: Monographs (Springer, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Three-level atom in a two-mode cavity. The atom is inside of a cavity that is driven with horizontally polarized light at strength Y, and κ is the cavity loss rate. The atomic transition between levels |1 and |2 is coupled to the driven cavity mode at rate g and the undriven mode couples to the |2 to |3 transition at rate G. The atom spontaneously emits outside the cavity at rates γ and Γ for the two atomic transitions.

Fig. 2.
Fig. 2.

Second-order intensity autocorrelations and cross-correlations (a) gaa(2)(τ), (b) gab(2)(τ), and (c) gba(2)(τ) for κ=0.5, γ=1, Y=0.01, g=1.3, G=αg, and Γ=αγ with α=0 (solid curve), 0.3 (dashed curve), and 0.6 (dotted curve).

Fig. 3.
Fig. 3.

Second-order intensity cross-correlations (a) gab(2)(τ), (b) gaγ(2)(τ), (c) gba(2)(τ), and (d) gγa(2)(τ) for κ=5.0, γ=1, Y=0.01, g=1.3, G=αg, and Γ=αγ with α=0 (solid curve), 0.3 (dashed curve), 0.6 (dotted curve).

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

H=ωaa+ωbb+ω2(|22||11||33|)+iY(aa)+ig(a|21|a|12|)+iG(b|23|b|32|),
ρ˙=1i[H,ρ]+γ2(2|12|ρ|21||22|ρρ|22|)+Γ2(2|32|ρ|23||22|ρρ|22|)+κ(2aρaaaρρaa)+κ(2bρbbbρρbb),
|Ψ(t)=n,mcnm1(t)|nm1+cnm2(t)|nm2+cnm3(t)|nm3,
Heff=Hiγ+Γ2|22|iκ(aa+bb).
|Ψ(0)=|001.
c˙nm1=Y(n+1cn+1m1ncn1m1)gncn1m2κ(n+m)cnm1,
c˙nm2=Y(n+1cn+1m2ncn1m2)+gn+1cn+1m1+Gm+1cnm+13κ(n+m)cnm2(γ+Γ2)cnm2,
c˙nm3=Y(n+1cn+1m3ncn1m3)Gmcnm12κ(n+m)cnm3.
c001=1,
c101=Yκ+Yg2κ2B,
c013=YgGκ2B,
c002=YgκB,
c102=1A(Yc002+YG2κc013+Ygκc101),
c113=Y2κc013G2κc102,
c201=[2Y2κ(g2Aκ1)(Yκ+Yg2κ2B)2g2Y22κ2AB+2g2G2Y24κ4AB],
A=(G22κ+γ+Γ2+κ+g2κ),
B=(g2κ+G2κ+γ+Γ2),
aass=Y2B2κ4(g2κB)2,
bbss=Y2g2G2B2κ4,
Pexcitedss=Y2g2B2κ2,
a2a2ss=Y44B2κ8[2(g2Aκ)(Bκg2)2g2κ2A+g2G2A]2,
b2b2ss=0.
gaa(2)(τ)=a(0)a(τ)a(τ)a(0)ssaass2.
gab(2)(τ)=a(0)b(τ)b(τ)a(0)ssaassbbss,
gba(2)(τ)=b(0)a(τ)a(τ)b(0)ssaassbbss,
gab(2)(0)=abbaaabb=baabbbaa=gba(2)(0).
gaa(2)(0)=B2[2(g2Aκ)(Bκg2)2g2κ2A+g2G2A]24(g2κB)4,
gab(2)(0)=B2(2κ2κ2A+G2A2BκA+2g2A)216(Bκg2)2.
(2G4+(γ+Γ)κ2(γ+Γ+2κ)+G2κ(3γ+3Γ+4κ)+2g2(G22κ2))2=0.
G2=g223γκ43Γκ4κ2+14[4g4+12g2γκ+12g2Γκ+48g2κ2+γ2κ2+2γΓκ2+Γ2κ2+8γκ3+8Γκ3+16κ4]12.
G2=g22κ2+12g4+12g2κ2+4κ4.
c201=Y2G22κ2(g2+G2)g2κc102,
gc102=Y2G2κ(g2+G2),
g2(κ+G22κ)(κ+g2κ+G2κ)=G2
c102=Y2g(κ+G22κ)κ(g2+G2)(κ+g2κ+G2κ).
g2=γ2(κ+γ2).
γ2G2κ
g2=G2κ(κ+G2κ).
gii(2)(0)1,
gii(2)(τ)gii(2)(0),
|gii(2)(τ)1||gii(2)(0)1|,
gij(2)(τ)gjj(2)(0)gii(2)(0),
|gij(2)(τ)1|2|(gii(2)(0)1)(gjj(2)(0)1)|,
gaγ(2)(τ)=a(0)a(0)Pe(τ)aaPe,
gγa(2)(τ)=Pe(0)aa(τ)aaPe,
ρab=(p000000p01d00d*p100000p11),
C=max(2|d|2p00p11,0)
d=c101c011*+c102c012*+c103c013*=0

Metrics