Abstract

The coherent control of the spontaneous emission spectrum of a driven atom located within photonic crystals with two atomic position-dependent bands is investigated. The driving laser field splits the excited atomic level into a doublet that is further dressed by two bands bonded together with the atomic position in the crystal unit cell. The spontaneous emission spectrum of the atomic transition in free space is discussed. We find that frequency shift and the intensity of the spectrum can be perfectly manipulated by variation of the atomic position and detuning of the laser field. The result perhaps offers us an interesting route towards tunable photonic devices.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  2. P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
    [CrossRef]
  3. P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
    [CrossRef]
  4. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  5. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [CrossRef]
  6. A. K. Patnaik and G. S. Agarwal, “Cavity-induced coherence effects in spontaneous emissions from reselection of polarization,” Phys. Rev. A 59, 3015–3020 (1999).
    [CrossRef]
  7. G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Springer, 1995).
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  10. A. Z. Khokhar, K. Parsons, G. Hubbard, I. M. Watson, F. Rahman, D. S. Macintyre, C. Xiong, D. Massoubre, Z. Gong, E. Gu, N. P. Johnson, R. M. De La Rue, M. D. Dawson, S. J. Abbott, M. D. B. Charlton, and M. Tillin, “Emission characteristics of photonic crystal light-emitting diodes,” Appl. Opt. 50, 3233–3239 (2011).
    [CrossRef]
  11. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17, 640–648 (2009).
    [CrossRef]
  12. K. Srinivasan, P. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004).
    [CrossRef]
  13. S. Tomljenovic-Hanic, M. J. Steel, D. S. C. Martijn, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32, 542–544 (2007).
    [CrossRef]
  14. G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
    [CrossRef]
  15. J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
    [CrossRef]
  16. S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
    [CrossRef]
  17. S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
    [CrossRef]
  18. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
    [CrossRef]
  19. K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
    [CrossRef]
  20. D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
    [CrossRef]
  21. S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
    [CrossRef]
  22. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
    [CrossRef]
  23. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
    [CrossRef]
  24. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
    [CrossRef]
  25. X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
    [CrossRef]
  26. S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
    [CrossRef]
  27. Y. P. Yang and S. Y. Zhu, “Spontaneous emission from a two-level atom in a three-dimensional photonic crystal,” Phys. Rev. A 62, 013805 (2000).
    [CrossRef]
  28. X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
    [CrossRef]
  29. X. S. Huang and Y. P. Yang, “Dynamic and radiative properties of a driven atom in anisotropic photonic crystals,” J. Opt. Soc. Am. B 24, 699–706 (2007).
    [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  31. M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge,” J. Opt. B 5, R43–R82 (2003).
    [CrossRef]
  32. D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
    [CrossRef]
  33. E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
    [CrossRef]
  34. H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
    [CrossRef]
  35. Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
    [CrossRef]
  36. N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
    [CrossRef]
  37. Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
    [CrossRef]
  38. I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
    [CrossRef]
  39. S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
    [CrossRef]
  40. M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
    [CrossRef]

2011

2010

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

2009

M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express 17, 640–648 (2009).
[CrossRef]

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

2008

2007

S. Tomljenovic-Hanic, M. J. Steel, D. S. C. Martijn, and D. J. Moss, “High-Q cavities in photosensitive photonic crystals,” Opt. Lett. 32, 542–544 (2007).
[CrossRef]

K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
[CrossRef]

X. S. Huang and Y. P. Yang, “Dynamic and radiative properties of a driven atom in anisotropic photonic crystals,” J. Opt. Soc. Am. B 24, 699–706 (2007).
[CrossRef]

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

2006

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

2004

2003

Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
[CrossRef]

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge,” J. Opt. B 5, R43–R82 (2003).
[CrossRef]

2002

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

2001

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
[CrossRef]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[CrossRef]

2000

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef]

Y. P. Yang and S. Y. Zhu, “Spontaneous emission from a two-level atom in a three-dimensional photonic crystal,” Phys. Rev. A 62, 013805 (2000).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
[CrossRef]

1999

A. K. Patnaik and G. S. Agarwal, “Cavity-induced coherence effects in spontaneous emissions from reselection of polarization,” Phys. Rev. A 59, 3015–3020 (1999).
[CrossRef]

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
[CrossRef]

E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
[CrossRef]

1998

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[CrossRef]

1997

S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
[CrossRef]

S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
[CrossRef]

1996

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[CrossRef]

1994

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef]

1992

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[CrossRef]

1991

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[CrossRef]

1990

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef]

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

1983

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

1981

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1973

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Abbott, S. J.

Agarwal, G. S.

A. K. Patnaik and G. S. Agarwal, “Cavity-induced coherence effects in spontaneous emissions from reselection of polarization,” Phys. Rev. A 59, 3015–3020 (1999).
[CrossRef]

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Springer, 1995).

Amos, R. M.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
[CrossRef]

Angelakis, D. G.

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
[CrossRef]

E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
[CrossRef]

Arakawa, Y.

Barclay, P.

Barnes, W. L.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
[CrossRef]

Barnett, A.

Bay, S.

S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
[CrossRef]

Busch, K.

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

Charlton, M. D. B.

Chen, C. H.

Chen, H.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
[CrossRef]

Chen, S.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

Cheng, S. C.

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

Creazzo, T.

Dawson, M. D.

De La Rue, R. M.

Dong, P.

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

Fleischhauer, M.

Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
[CrossRef]

Florescu, M.

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[CrossRef]

Gong, Z.

Goy, P.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Gross, M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Gu, E.

Haroche, S.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

He, J.

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

Honsberg, C.

Hsieh, W. F.

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

Huang, H.

S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
[CrossRef]

Huang, X. S.

Hubbard, G.

Iwamoto, S.

Javanainen, J.

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[CrossRef]

Jiang, X. Q.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
[CrossRef]

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

Jiang, Y. Y.

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

John, S.

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge,” J. Opt. B 5, R43–R82 (2003).
[CrossRef]

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef]

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[CrossRef]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Johnson, N. P.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Khokhar, A. Z.

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Knight, P. L.

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
[CrossRef]

E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
[CrossRef]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[CrossRef]

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Koenderink, A. F.

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

Kumagai, N.

Lambropoulos, P.

S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
[CrossRef]

Li, Z. Y.

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef]

Liao, G. Z.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

Lin, L. L.

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef]

Lodahl, P.

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

Lu, Z. W.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
[CrossRef]

Macintyre, D. S.

Martijn, D. S. C.

Massoubre, D.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Milonni, P. W.

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Molmer, K.

S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
[CrossRef]

Moss, D. J.

Mutitu, J. G.

Nikolaev, I. S.

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

Nomura, M.

Ota, Y.

Painter, O.

Parsons, K.

Paspalakis, E.

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
[CrossRef]

E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
[CrossRef]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[CrossRef]

Patnaik, A. K.

A. K. Patnaik and G. S. Agarwal, “Cavity-induced coherence effects in spontaneous emissions from reselection of polarization,” Phys. Rev. A 59, 3015–3020 (1999).
[CrossRef]

Prather, D. W.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Quan, X.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef]

Rahman, F.

Raimond, J. M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Scully, M. O.

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[CrossRef]

Shi, S. Y.

Srinivasan, K.

Steel, M. J.

Sun, X. D.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
[CrossRef]

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

Tandaechanurat, A.

Tang, S. H.

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

Tillin, M.

Tomljenovic-Hanic, S.

van Driel, A. F.

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

Vats, N.

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

Vos, W. L.

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

Wang, J.

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[CrossRef]

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef]

Wang, Y. L.

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

Watson, I. M.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

Woldeyohannes, M.

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge,” J. Opt. B 5, R43–R82 (2003).
[CrossRef]

Worthing, P. T.

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
[CrossRef]

Wu, J. N.

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

Xiong, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yang, T. J.

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

Yang, Y. P.

X. S. Huang and Y. P. Yang, “Dynamic and radiative properties of a driven atom in anisotropic photonic crystals,” J. Opt. Soc. Am. B 24, 699–706 (2007).
[CrossRef]

Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
[CrossRef]

Y. P. Yang and S. Y. Zhu, “Spontaneous emission from a two-level atom in a three-dimensional photonic crystal,” Phys. Rev. A 62, 013805 (2000).
[CrossRef]

Zhang, B.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
[CrossRef]

Zhang, H.

K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
[CrossRef]

Zhang, H. Z.

K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
[CrossRef]

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

Zhang, K.

K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
[CrossRef]

Zhang, Y. B.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

Zhang, Z. Q.

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef]

Zhu, S. Y.

Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
[CrossRef]

Y. P. Yang and S. Y. Zhu, “Spontaneous emission from a two-level atom in a three-dimensional photonic crystal,” Phys. Rev. A 62, 013805 (2000).
[CrossRef]

S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
[CrossRef]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[CrossRef]

Appl. Opt.

Environ. Sci. Technol.

G. Z. Liao, S. Chen, X. Quan, H. Chen, and Y. B. Zhang, “Photonic crystal coupled TiO2 Polymer hybrid for efficient photocatalysis under visible light irradiation,” Environ. Sci. Technol. 44, 3481–3485 (2010).
[CrossRef]

Europhys. Lett.

J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992).
[CrossRef]

J. Mod. Opt.

K. Zhang, H. Zhang, and H. Z. Zhang, “The spontaneous emission spectrum of a driven atom embedded in double-band photonic crystals,” J. Mod. Opt. 54, 33–43 (2007).
[CrossRef]

J. Opt. B

M. Woldeyohannes and S. John, “Coherent control of spontaneous emission near a photonic band edge,” J. Opt. B 5, R43–R82 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

E. Paspalakis, D. G. Angelakis, and P. L. Knight, “The influence of density of modes on dark lines in spontaneous emission,” Opt. Commun. 172, 229–240 (1999).
[CrossRef]

P. W. Milonni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119–122 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. A

P. T. Worthing, R. M. Amos, and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59, 865–872 (1999).
[CrossRef]

A. K. Patnaik and G. S. Agarwal, “Cavity-induced coherence effects in spontaneous emissions from reselection of polarization,” Phys. Rev. A 59, 3015–3020 (1999).
[CrossRef]

H. Z. Zhang, S. H. Tang, P. Dong, and J. He, “Quantum interference in spontaneous emission of an atom embedded in a double-band photonic crystal,” Phys. Rev. A 65, 063802 (2002).
[CrossRef]

Y. P. Yang, M. Fleischhauer, and S. Y. Zhu, “Spontaneous emission from a two-level atom in two-band anisotropic photonic crystals,” Phys. Rev. A 68, 043805 (2003).
[CrossRef]

N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Coherent phenomena in photonic crystals,” Phys. Rev. A 64, 013801 (2001).
[CrossRef]

D. G. Angelakis, E. Paspalakis, and P. L. Knight, “Transient properties of modified reservoir-induced transparency,” Phys. Rev. A 61, 055802 (2000).
[CrossRef]

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A 83, 053823 (2011).
[CrossRef]

Y. P. Yang and S. Y. Zhu, “Spontaneous emission from a two-level atom in a three-dimensional photonic crystal,” Phys. Rev. A 62, 013805 (2000).
[CrossRef]

X. Q. Jiang, Y. Y. Jiang, Y. L. Wang, and X. D. Sun, “Non-Markovian decay of a three-level atom in a photonic-band-gap reservoir,” Phys. Rev. A 73, 033802 (2006).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
[CrossRef]

S. C. Cheng, J. N. Wu, T. J. Yang, and W. F. Hsieh, “Effect of atomic position on the spontaneous emission of a three-level atom in a coherent photonic-band-gap reservoir,” Phys. Rev. A 79, 013801 (2009).
[CrossRef]

M. Florescu and S. John, “Single-atom switching in photonic crystals,” Phys. Rev. A 64, 033801 (2001).
[CrossRef]

Phys. Rev. B

I. S. Nikolaev, P. Lodahl, A. F. van Driel, A. F. Koenderink, and W. L. Vos, “Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals,” Phys. Rev. B 75, 115302 (2007).
[CrossRef]

S. John and J. Wang, “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991).
[CrossRef]

Phys. Rev. Lett.

S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

S. Bay, P. Lambropoulos, and K. Molmer, “Fluorescence into flat and structured radiation continua: an atomic density matrix without a master equation,” Phys. Rev. Lett. 79, 2654–2657 (1997).
[CrossRef]

S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997).
[CrossRef]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[CrossRef]

E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998).
[CrossRef]

Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
[CrossRef]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals. Molding the Flow of Light, 2nd ed.(Princeton University, 2008).

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The sketch diagram displays (a) the atomic system and (b) the distribution of photonic LDOS ρ(r0,ω) depending on the atomic position r0 in a crystal unit cell. The atom is initially in the lower state |0 and driven by a laser field to the excited state |1 with the Rabi frequency Ω and the laser detuning δ. θ(r0) is the atomic position-dependent parameter between two bands, and ω is the photonic frequency.

Fig. 2.
Fig. 2.

The SE spectrum S(δλ) (in arbitrary units) controlled by the different atomic position-dependent parameter θ(r0). The parameters (in units of β) are Ω=0.1, γ=0.01, δ=0, Δ0=0.4, and the atomic transition (a) Δ1=0.7β, Δ2=0.3β in the lower band; (b) Δ1=0.1β, Δ2=0.5β in the upper band.

Fig. 3.
Fig. 3.

The SE spectrum S(δλ) (in arbitrary units) manipulated by the laser detuning δ. The parameters (in units of β) are Ω=0.1, γ=0.01, and (a) Δ0=0.4, Δ1=0.3, Δ2=0.7, θ(r0)=π/6; (b) Δ0=0.2, Δ1=0.2, Δ2=0.4, θ(r0)=π/3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H=i{Ωeiωpt|10|+λgλbλ|13|+ugu(r0)bu|12|+lgl(r0)bl|12|}+H.c.
|Ψ(t)=A0(t)eiω0t|0,{0}+A1(t)eiω1t|1,{0}+λA3λ(t)ei(ω3+ωλ)t|3,{1λ}+uA2u(t)ei(ω2+ωu)t|2,{1u}+lA2l(t)ei(ω2+ωl)t|2,{1l}.
A1(t)t=ΩA0(t)ei(ωpω10)tugu(r0)A2u(t)ei(ωuω12)tlgl(r0)A2l(t)ei(ωlω12)tλgλA3λ(t)ei(ωλω13)tA2l(t)t=lgl(r0)A1(t)ei(ωlω12)tA2u(t)t=ugu(r0)A1(t)ei(ωuω12)tA3λ(t)t=gλA1(t)ei(ωλω13)tA0(t)t=ΩA1(t)ei(ωpω10)t}.
A˜1(s)=Ω(s+iδ)(s+γ2+Ω2s+iδ+ugu2(r0)s+i(ωuω12)+lgl2(r0)s+i(ωlω12)).
A˜1(s)=Ω(s+iδ)(s+γ2+Ω2s+iδiβ13/2sin2θ(r0)ωc1+isΔ1+iβ23/2cos2θ(r0)ωc2+is+Δ2).

Metrics