Abstract

The rapid temperature change and the near-field enhancement resulting from resonant interactions between short laser pulses and noble-metal nanoparticles could be utilized for precise manipulations of matter on a nanometric scale. Here, we present a theoretical study of the relative effects of various experimental parameters, including pulse duration, irradiance, and wavelength, and a particle’s substance, size, and shape. We show that spatially confined, local nanometric interactions between a particle and its near surroundings are feasible using 50 nm gold and silver nanospheres illuminated by laser pulses shorter than 70 fs and 90 fs, respectively, with no particle melting and minimal collateral damage. The results of this work could be useful for researchers in various fields, who aim at manipulating matter on the smallest possible scales, with high specificity and accuracy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983).
    [CrossRef]
  2. G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
    [CrossRef]
  3. M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995).
    [CrossRef]
  4. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
    [CrossRef]
  5. V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
    [CrossRef]
  6. K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).
  7. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).
  8. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
    [CrossRef]
  9. U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
    [CrossRef]
  10. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
    [CrossRef]
  11. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
    [CrossRef]
  12. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [CrossRef]
  13. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
    [CrossRef]
  14. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
    [CrossRef]
  15. Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
    [CrossRef]
  16. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
    [CrossRef]
  17. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003).
    [CrossRef]
  18. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
    [CrossRef]
  19. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
    [CrossRef]
  20. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438–1440 (2007).
    [CrossRef]
  21. D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).
  22. G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
    [CrossRef]
  23. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [CrossRef]
  24. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
    [CrossRef]
  25. O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
    [CrossRef]
  26. A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
    [CrossRef]
  27. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
    [CrossRef]
  28. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
    [CrossRef]
  29. W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).
  30. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
    [CrossRef]
  31. Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).
  32. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
    [CrossRef]
  33. N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
    [CrossRef]
  34. A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
    [CrossRef]
  35. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
    [CrossRef]
  36. O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
    [CrossRef]
  37. H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
    [CrossRef]
  38. A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
    [CrossRef]
  39. E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).
  40. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [CrossRef]
  41. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  42. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  43. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).
  44. S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
    [CrossRef]
  45. B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006).
    [CrossRef]
  46. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  47. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1960).
  48. T. Okamoto and S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 97–123.
  49. H. C. Hulst, Light Scattering by Small Particles (Courier Dover, 1981).
  50. M. Quinten, “Local fields and Poynting vectors in the vicinity of the surface of small spherical particles,” Zeitschrift für Physik D 35, 217–224 (1995).
  51. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
    [CrossRef]
  52. N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972).
    [CrossRef]
  53. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma inducedby a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
    [CrossRef]
  54. F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6, 407 (1988).
    [CrossRef]
  55. W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
  56. P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
    [CrossRef]
  57. W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
    [CrossRef]
  58. W. M. Haynes, CRC Handbook of Chemistry and Physics, 91st ed. (CRC Press/Taylor and Francis, 2011).
  59. M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
    [CrossRef]
  60. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
    [CrossRef]
  61. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
    [CrossRef]
  62. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef]
  63. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [CrossRef]
  64. P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
    [CrossRef]
  65. A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
    [CrossRef]

2011

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

2009

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

2008

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
[CrossRef]

H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

2007

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[CrossRef]

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
[CrossRef]

T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32, 1438–1440 (2007).
[CrossRef]

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[CrossRef]

2006

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
[CrossRef]

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006).
[CrossRef]

2005

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma inducedby a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
[CrossRef]

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
[CrossRef]

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

2004

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

2003

2002

U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

2001

K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
[CrossRef]

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

2000

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

1999

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

1997

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[CrossRef]

1995

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20, 2258–2260 (1995).
[CrossRef]

M. Quinten, “Local fields and Poynting vectors in the vicinity of the surface of small spherical particles,” Zeitschrift für Physik D 35, 217–224 (1995).

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[CrossRef]

M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995).
[CrossRef]

1993

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

1989

1988

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6, 407 (1988).
[CrossRef]

1983

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983).
[CrossRef]

1981

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

1977

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[CrossRef]

1976

W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[CrossRef]

1972

N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1969

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Acker, J. P.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
[CrossRef]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983).
[CrossRef]

AshaRani, P. V.

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Astruc, D.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

Barton, J. K.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Ben-Yakar, A.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Berciaud, S. P.

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

Bisker, G.

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Bolin, F. P.

Borel, J. P.

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[CrossRef]

Bouma, B. E.

Brezinski, M. E.

Buffat, P.

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

Chang, C.-C.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

Chang, S.-S.

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Cognet, L.

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

Cortie, M. B.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).

Csaki, A.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Cuiping, Y.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

Dahmen, C.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

Daniel, M. C.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

Datta, D.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Docchio, F.

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6, 407 (1988).
[CrossRef]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Durr, N. J.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Eggeling, C.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

Ekici, O.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Elezzabi, A. Y.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

Eversole, D.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
[CrossRef]

Eversole, D. S.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Fang, J.

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

Ferd, W.

W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).

Ference, R. J.

Festag, G.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Fischer, P.

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

Fragstein, C. V.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).

Fritzsche, W.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
[CrossRef]

Fujimoto, J. G.

Garwe, F.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Gereon, H. T.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

Goia, D.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Gong, Q.

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[CrossRef]

Gray, S. K.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Guerra, A.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

Guyot-Sionnest, P.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Halas, N. J.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Halbhuber, J. K.

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

Hande, M. P.

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Harrison, R. K.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics, 91st ed. (CRC Press/Taylor and Francis, 2011).

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Hee, M. R.

Hell, S. W.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

Hillenius, S.

W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).

Hirsch, L. R.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Hofmann, M.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

Hu, W.

W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Hulst, H. C.

H. C. Hulst, Light Scattering by Small Particles (Courier Dover, 1981).

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Ingber, D. E.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Iyer, A. K.

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

Jain, P. K.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[CrossRef]

Jakobs, S.

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

Jiang, H.

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Jorge, O. T.

B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006).
[CrossRef]

Kawata, S.

T. Okamoto and S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 97–123.

Kennedy, P. K.

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[CrossRef]

Khaled, G.

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1960).

Knüttel, A.

Koda, S.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[CrossRef]

Kohli, V.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
[CrossRef]

Konig, K.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

König, K.

K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
[CrossRef]

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

Kotaidis, V.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

Kreibig, U.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).

Kroll, N.

N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972).
[CrossRef]

Kurita, H.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[CrossRef]

Lapotko, D. O.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
[CrossRef]

Latina, M. A.

M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995).
[CrossRef]

LeCarpentier, G. L.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

LeDuc, P.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Lee, C.-L.

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

Lee, M.

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Lee, T.-W.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

Liu, M.

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Liu, Y.

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Lounis, B.

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Low Kah Mun, G.

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

Lucía, B. S.

B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006).
[CrossRef]

Luk’yanchuk, B.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
[CrossRef]

Lukianova, E.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
[CrossRef]

Lukianova-Hleb, E. Y.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

Luo, W.

W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
[CrossRef]

Maeda, H.

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

Mafune, F.

H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

Makoto, H.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Masaaki, T.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Maubach, G.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Mazur, E.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

McLaughlin, R. E.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

McMath, L. P.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

Metelitsa, L. S.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Minai, L.

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

Miyajima, K.

H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

Moses, E.

Motamedi, M.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

Muto, H.

H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

Myer, L.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Nahen, K.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

Nedyalkov, N. N.

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
[CrossRef]

Niidome, T.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

O’Neal, D. P.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Obara, M.

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
[CrossRef]

Okamoto, T.

T. Okamoto and S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 97–123.

Oraevsky, A. A.

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
[CrossRef]

Oron, D.

Osamu, W.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Paciotti, G. F.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Park, C.

M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995).
[CrossRef]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983).
[CrossRef]

Pavel, N.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Payne, J. D.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Pissuwan, D.

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).

Plech, A.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

Preuss, L. E.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

Quinten, M.

M. Quinten, “Local fields and Poynting vectors in the vicinity of the surface of small spherical particles,” Zeitschrift für Physik D 35, 217–224 (1995).

Ramtin, R.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

Rastegar, S.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

Riemann, I.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26, 819–821 (2001).
[CrossRef]

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

Romanowski, M.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Samaniego, A. P.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

Schaffer, C. B.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Schmitt, J. M.

Sevilla, C.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[CrossRef]

Shen, N.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Silberberg, Y.

Southern, J. F.

Springer, F.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

Steinbruck, A.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Sun, Q.

Taiji, I.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Takada, H.

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
[CrossRef]

Takami, A.

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[CrossRef]

Tamarat, P.

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

Tamarkin, L.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Taylor, R. C.

Tearney, G. J.

Thiberge, S.

Tirlapur, U. K.

U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Troutman, T. S.

Valiyaveettil, S.

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Varma, S. P.

W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).

Venugopalan, V.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

Volkov, A. N.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[CrossRef]

von Plessen, G.

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

Wang, C. R. C.

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Warshavski, O.

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

Watson, K. M.

N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972).
[CrossRef]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Weinreich, D.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Weise, A.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

Welch, A. J.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

Wen, J.

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

West, J. L.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Wu, Z.

Xiao, S.

W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
[CrossRef]

Xiaochao, Q.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

Yang, H.

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Yelin, D.

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11, 1385–1391 (2003).
[CrossRef]

Yoshimasa, K.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Yu, Yu-Ying

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

Zhenxi, Z.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

Zhigilei, L. V.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

ACS Nano

P. V. AshaRani, G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil, “Cytotoxicity and genotoxicity of silver nanoparticles in human cells,” ACS Nano 3, 279–290 (2009).
[CrossRef]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt.

Appl. Phys. A

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A 89, 283–291 (2007).
[CrossRef]

N. N. Nedyalkov, H. Takada, and M. Obara, “Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles,” Appl. Phys. A 85, 163–168 (2006).
[CrossRef]

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

W. Osamu, I. Taiji, H. Makoto, T. Masaaki, and K. Yoshimasa, “Nanofabrication induced by near-field exposure from a nanosecond laser pulse,” Appl. Phys. Lett. 79, 1366 (2001).

Appl. Surf. Sci.

A. N. Volkov, C. Sevilla, and L. V. Zhigilei, “Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water,” Appl. Surf. Sci. 253, 6394–6399 (2007).
[CrossRef]

Cancer Lett.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209, 171–176 (2004).
[CrossRef]

Cell. Mol. Biol.

K. König, I. Riemann, P. Fischer, and J. K. Halbhuber, “Intracellular nanosurgery with near infrared femtosecond laser pulses,” Cell. Mol. Biol. 45, 195–201 (1999).

Chem. Rev.

M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

Drug Deliv.

G. F. Paciotti, L. Myer, D. Weinreich, D. Goia, N. Pavel, R. E. McLaughlin, and L. Tamarkin, “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Deliv. 11, 169–183 (2004).
[CrossRef]

Drug Discov. Today

A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, “Exploiting the enhanced permeability and retention effect for tumor targeting,” Drug Discov. Today 11, 812–818 (2006).
[CrossRef]

Europhys. Lett.

F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6, 407 (1988).
[CrossRef]

Exp. Eye Res.

M. A. Latina and C. Park, “Selective targeting of trabecular meshwork cells: in vitro studies of pulsed and CW laser interactions,” Exp. Eye Res. 60, 359–371 (1995).
[CrossRef]

IEEE J. Quantum Electron.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[CrossRef]

P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995).
[CrossRef]

IEEE Trans. Biomed. Eng.

G. L. LeCarpentier, M. Motamedi, L. P. McMath, S. Rastegar, and A. J. Welch, “Continuous wave laser ablation of tissue: analysis of thermal and mechanical events,” IEEE Trans. Biomed. Eng. 40, 188–200 (1993).
[CrossRef]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef]

J. Biomed. Opt.

Y. Cuiping, Q. Xiaochao, Z. Zhenxi, H. T. Gereon, and R. Ramtin, “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” 14, 054034J. Biomed. Opt. (2009).

J. Chem. Phys.

W. Ferd, S. P. Varma, and S. Hillenius, “Liquid Water as a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).

V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, “Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” J. Chem. Phys. 124, 184702–184707 (2006).
[CrossRef]

J. Control. Release

E. Y. Lukianova-Hleb, A. P. Samaniego, J. Wen, L. S. Metelitsa, C.-C. Chang, and D. O. Lapotko, “Selective gene transfection of individual cells in vitro with plasmonic nanobubbles,” J. Control. Release 152, 286–293 (2011).

J. Controlled Release

D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” J. Controlled Release 149, 65–71 (2011).

J. Opt. Soc. Am. A

J. Phys. Chem. B

A. Takami, H. Kurita, and S. Koda, “Laser-induced size reduction of noble metal particles,” J. Phys. Chem. B 103, 1226–1232 (1999).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104, 6152–6163 (2000).
[CrossRef]

Yu-Ying Yu, S.-S. Chang, C.-L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661–6664 (1997).
[CrossRef]

J. Phys. Chem. C

O. Warshavski, L. Minai, G. Bisker, and D. Yelin, “Effect of single femtosecond pulses on gold nanoparticles,” J. Phys. Chem. C 115, 3910–3917 (2011).
[CrossRef]

H. Muto, K. Miyajima, and F. Mafune, “Mechanism of laser-induced size reduction of gold nanoparticles as studied by single and double laser pulse excitation,” J. Phys. Chem. C 112, 5810–5815 (2008).
[CrossRef]

W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).
[CrossRef]

J. Phys. D

O. Ekici, R. K. Harrison, N. J. Durr, D. S. Eversole, M. Lee, and A. Ben-Yakar, “Thermal analysis of gold nanorods heated with femtosecond laser pulses,” J. Phys. D 41, 185501 (2008).
[CrossRef]

Lasers Surg. Med.

V. Kohli, A. Y. Elezzabi, and J. P. Acker, “Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation,” Lasers Surg. Med. 37, 227–230 (2005).
[CrossRef]

D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers Surg. Med. 38, 631–642 (2006).
[CrossRef]

Mech. Chem. Biosyst.

N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mech. Chem. Biosyst. 2, 17–25 (2005).

Nano Lett.

A. Csaki, F. Garwe, A. Steinbruck, G. Maubach, G. Festag, A. Weise, I. Riemann, K. Konig, and W. Fritzsche, “A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas,” Nano Lett. 7, 247–253 (2007).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[CrossRef]

S. P. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5, 515–518 (2005).
[CrossRef]

Nano Today

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[CrossRef]

Nanotechnology

B. S. Lucía and O. T. Jorge, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17, 1309 (2006).
[CrossRef]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Nature

U. K. Tirlapur and K. Konig, “Cell biology: targeted transfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature 432, 822–822 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

P. Buffat and J. P. Borel, “Size effect on the melting temperature of gold particles,” Phys. Rev. A 13, 2287–2298 (1976).
[CrossRef]

N. Kroll and K. M. Watson, “Theoretical study of ionization of air by intense laser pulses,” Phys. Rev. A 5, 1883 (1972).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T.-W. Lee, and S. K. Gray, “Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations,” Phys. Rev. B 76, 235428 (2007).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513 (1977).
[CrossRef]

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24, 649 (1981).
[CrossRef]

Phys. Rev. Lett.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88, 078103 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. USA 102, 17565–17569 (2005).
[CrossRef]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102, 15752–15756 (2005).
[CrossRef]

Science

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220, 524–527 (1983).
[CrossRef]

Zeitschrift für Physik A

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik A 224, 307–323 (1969).

Zeitschrift für Physik D

M. Quinten, “Local fields and Poynting vectors in the vicinity of the surface of small spherical particles,” Zeitschrift für Physik D 35, 217–224 (1995).

Other

C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1960).

T. Okamoto and S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001), pp. 97–123.

H. C. Hulst, Light Scattering by Small Particles (Courier Dover, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

W. M. Haynes, CRC Handbook of Chemistry and Physics, 91st ed. (CRC Press/Taylor and Francis, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic illustration of nanomanipulations of cells in culture using resonant pulse illumination of targeted gold nanoparticles. (b) Schematic of the interaction geometry between polarized light and a dielectric nanospheres of radius a.

Fig. 2.
Fig. 2.

Calculated Mie efficiencies of gold and silver nanospheres in water for various particle diameters and wavelengths, including the size-dependant correction for the dielectric constant. (a) Absorption efficiency of gold nanospheres. (b) Absorption efficiency of silver nanospheres. (c) Near-field efficiency of gold nanospheres. (d) Near-field efficiency of silver nanospheres.

Fig. 3.
Fig. 3.

(a) Wavelength of maximal absorption efficiency (solid curves) and maximal near-field efficiency (dashed), for gold (blue) and silver (red) nanospheres. (b) Maximum absorption efficiency (solid curves) and the absorption efficiency at λNF (dashed), for gold (blue) and silver (red) nanospheres.

Fig. 4.
Fig. 4.

Near-field enhancement factor (scattered field amplitude divided by incident field amplitude) at λNF (see text), including the size-dependant correction for the dielectric constant. (a) gold, 5 nm diameter, (b) gold, 20 nm diameter, (c) gold, 50 nm diameter (d) silver, 5 nm diameter, (e) silver, 20 nm diameter, (f) silver, 50 nm diameter. The region where the near-field enhancement factor is higher than its 1/e1/2 value is marked by a gray dashed line in (f).

Fig. 5.
Fig. 5.

Free electron density near 50 nm diameter gold nanoparticles as a function of time normalized by pulse duration with (blue solid line) and without (dashed line) cascade ionization. (a) τp=1ns. (b) τp=100ps. (c) τp=10ps. (d) τp=1ps. (e) τp=50fs. (f) τp=5fs.

Fig. 6.
Fig. 6.

Ratio between the maximal free electron density with and without cascade ionization for gold (blue) and silver (red) nanoparticles with diameters of 50 nm (solid), 20 nm (dashed), and 5 nm (dotted dashed line).

Fig. 7.
Fig. 7.

Total number of free electrons in the interaction volume as a function of pulse irradiance (normalized by its threshold intensity) for pulse durations of 50 fs (solid), 1 ps (dashed), and 100 ps (dashed-dotted line), for gold (blue) and silver (red) nanospheres. Sphere diameter is 50 nm. Wavelength is equal to λNF (maximum near-field efficiency).

Fig. 8.
Fig. 8.

Temperature of gold nanospheres as a function of pulse duration and irradiance. Solid lines connect between irradiance threshold values (circles) for optical breakdown, corresponding to free electron density of 1021cm3. Dashed lines connect between irradiance threshold values for the generation of a single free electron within the interaction volume. (a) 50 nm diameter sphere. (b) 20 nm sphere. (c) 5 nm sphere.

Fig. 9.
Fig. 9.

Temperature of silver nanospheres as a function of pulse duration and irradiance. Solid lines connect between irradiance threshold values (circles) for optical breakdown, corresponding to free electron density of 1021cm3. Dashed lines connect between irradiance threshold values for the generation of a single free electron within the interaction volume. (a) 50 nm diameter sphere. (b) 20 nm sphere. (c) 5 nm sphere.

Fig. 10.
Fig. 10.

Temperature of gold nanorod of 14 nm in diameter with aspect ratio of 4.1, as a function of pulse duration and irradiance. Solid lines connect between irradiance threshold values (circles) for optical breakdown, corresponding to free electron density of 1021cm3. Dashed lines connect between irradiance threshold values for the generation of a single free electron within the interaction volume.

Fig. 11.
Fig. 11.

Generalized phase diagram of the various processes induced by optical pulses of different durations and irradiance levels illuminating gold and silver nanoparticles.

Tables (2)

Tables Icon

Table 1. Physical Constants of Gold and Silver Nanoparticles

Tables Icon

Table 2. Calculated Parameters of the Transition Point A in Fig. 11 (See Text)

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

εp=εfree+εbound,
εfree=1ωp2ω02+iω0γfree,
γfree(a)=γbulk+AvFa,
Qext=2x2l=1(2l+1)Re(al+bl),
Qsca=2x2l=1(2l+1)(|al|2+|bl|2),
Qabs=QextQsca,
x=2πaλ0εm,
al=mψl(mx)ψl(x)ψl(x)ψl(mx)mψl(mx)ξl(x)ξl(x)ψl(mx)
bl=ψl(mx)ψl(x)mψl(x)ψl(mx)ψl(mx)ξl(x)mξl(x)ψl(mx),
QNF=2l=1{|al|2[(l+1)|hl1(1)(ka)|2+l|hl+1(1)(ka)|2]+(2l+1)|bl|2|hl(1)(ka)|2},
dρdt=ηMPI+ηcascρcηdiffρηrecρ2.
ηdiff=2Eavτ3mΛ2,
ηMPI=2ω09π(mω0)32[e216mΔω02cε0nmI(t)]kexp(2k)Φ(2k2Δω0),
Φ(x)=0xey2x2dy.
ηcasc={η1+η(tτion)ρcV120ρcV<12,
η=1ω02τ2+1(e2τcnmε0mΔI(t)mω02τM),
Ip(t)=I0exp[4ln2(tτp)2],
Eabs=Ipulseπa2Qabs,
T={Eabscpmnp+T0EabsEmTmEm<Eabs<Em+mnpΔHfus,

Metrics