Abstract

We propose and examine single-stack matching-layer enhanced Bragg reflection waveguides (BRWs) as a platform for integrated parametric devices. The proposed designed is asymmetric in geometry, where a multilayer core is surrounded by a single-layer upper cladding and a lower quarter-wave Bragg mirror. The propagation of the Bragg mode in the new design relies on total internal reflection from the upper cladding and Bragg reflection from the lower periodic cladding. Analytical expressions for modal analysis of TE- and TM-polarized Bragg modes are derived. An AlxGa1xAs second-harmonic generation device is theoretically examined to highlight nonlinear performance of the new design, and it is compared to symmetric phase-matched BRWs reported to date. The application of the same structure for generation of anticorrelated photon pairs is discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [CrossRef]
  2. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
    [CrossRef]
  3. J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
    [CrossRef]
  4. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [CrossRef]
  5. C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
    [CrossRef]
  6. A. S. Helmy, B. J. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007).
    [CrossRef]
  7. B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
    [CrossRef]
  8. P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
    [CrossRef]
  9. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  10. R. L. Roncone, L. F. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of a single leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
    [CrossRef]
  11. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
    [CrossRef]
  12. J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008).
    [CrossRef]
  13. Y. Li, Y. Xi, X. Li, and W. P. Huang, “A single-mode laser based on asymmetric Bragg reflection waveguides,” Opt. Express 17, 11179–11186 (2009).
    [CrossRef]
  14. R. Das and K. Thyagarajan, “Anomalous behaviour in a Bragg reflection waveguide,” Opt. Commun. 273, 84–88 (2007).
    [CrossRef]
  15. R. Das and K. Thyagarajan, “Broadband parametric amplification in Bragg reflection waveguide,” J. Mod. Opt. 55, 273–279 (2008).
    [CrossRef]
  16. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [CrossRef]
  17. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  18. P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, “Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors,” Opt. Express 18, 12681–12689 (2010).
    [CrossRef]
  19. S. V. Zhukovsky, D. Kang, P. Abolghasem, L. G. Helt, J. E. Sipe, and A. S. Helmy, “Proposal for on-chip generation and control of photon hyperentanglement,” Opt. Lett. 36, 3548–3550 (2011).
    [CrossRef]
  20. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
    [CrossRef]
  21. E. Anemogianni and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” IEEE J. Lightwave Technol. 10, 1344–1351 (1992).
    [CrossRef]
  22. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
    [CrossRef]

2011 (2)

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

S. V. Zhukovsky, D. Kang, P. Abolghasem, L. G. Helt, J. E. Sipe, and A. S. Helmy, “Proposal for on-chip generation and control of photon hyperentanglement,” Opt. Lett. 36, 3548–3550 (2011).
[CrossRef]

2010 (3)

2009 (5)

2008 (3)

R. Das and K. Thyagarajan, “Broadband parametric amplification in Bragg reflection waveguide,” J. Mod. Opt. 55, 273–279 (2008).
[CrossRef]

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008).
[CrossRef]

2007 (2)

R. Das and K. Thyagarajan, “Anomalous behaviour in a Bragg reflection waveguide,” Opt. Commun. 273, 84–88 (2007).
[CrossRef]

A. S. Helmy, B. J. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

1994 (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

1993 (1)

1992 (1)

E. Anemogianni and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” IEEE J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

1978 (1)

1977 (1)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Abolghasem, P.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

S. V. Zhukovsky, D. Kang, P. Abolghasem, L. G. Helt, J. E. Sipe, and A. S. Helmy, “Proposal for on-chip generation and control of photon hyperentanglement,” Opt. Lett. 36, 3548–3550 (2011).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, “Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors,” Opt. Express 18, 12681–12689 (2010).
[CrossRef]

J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

A. S. Helmy, B. J. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef]

Aitchison, J. S.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Alali, S.

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

Alhemyari, K.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Anemogianni, E.

E. Anemogianni and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” IEEE J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Baets, R.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bates, K. A.

Bienstman, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Bijlani, B.

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

Bijlani, B. J.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, “Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors,” Opt. Express 18, 12681–12689 (2010).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

A. S. Helmy, B. J. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef]

Bogaerts, W.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Burke, J. J.

Chiang, K. S.

J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008).
[CrossRef]

Das, R.

R. Das and K. Thyagarajan, “Broadband parametric amplification in Bragg reflection waveguide,” J. Mod. Opt. 55, 273–279 (2008).
[CrossRef]

R. Das and K. Thyagarajan, “Anomalous behaviour in a Bragg reflection waveguide,” Opt. Commun. 273, 84–88 (2007).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Glytsis, E. N.

E. Anemogianni and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” IEEE J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Grant, R. S.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Han, J.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, “Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors,” Opt. Express 18, 12681–12689 (2010).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Han, J. B.

Helmy, A. S.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

S. V. Zhukovsky, D. Kang, P. Abolghasem, L. G. Helt, J. E. Sipe, and A. S. Helmy, “Proposal for on-chip generation and control of photon hyperentanglement,” Opt. Lett. 36, 3548–3550 (2011).
[CrossRef]

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, and A. S. Helmy, “Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors,” Opt. Express 18, 12681–12689 (2010).
[CrossRef]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef]

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009).
[CrossRef]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
[CrossRef]

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

A. S. Helmy, B. J. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguides,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef]

Helt, L. G.

Hendrych, M.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Huang, W. P.

Ironside, C. N.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Kang, D.

Kang, D. P.

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

Kang, J.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Kennedy, G. T.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Li, J.

J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008).
[CrossRef]

Li, L. F.

Li, X.

Li, Y.

Lin, C. H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Lin, H. H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Marom, E.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Roncone, R. L.

Shi, X.

Sibbett, W.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Sipe, J. E.

Stegeman, G. I.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Taillaert, D.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Thyagarajan, K.

R. Das and K. Thyagarajan, “Broadband parametric amplification in Bragg reflection waveguide,” J. Mod. Opt. 55, 273–279 (2008).
[CrossRef]

R. Das and K. Thyagarajan, “Anomalous behaviour in a Bragg reflection waveguide,” Opt. Commun. 273, 84–88 (2007).
[CrossRef]

Tong, C.

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

Torres, J. P.

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

Villeneuve, A.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Weisenbach, L.

Xi, Y.

Yang, C. C.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

Yariv, A.

Yeh, P.

Zelinski, B. J. J.

Zhukovsky, S. V.

Appl. Opt. (1)

Appl. Phys. (2)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

B. Bijlani, P. Abolghasem, and A. S. Helmy, “Second harmonic generation in ridge Bragg reflection waveguides,” Appl. Phys. Lett. 92, 101124 (2008).
[CrossRef]

IEEE J. Lightwave Technol. (1)

E. Anemogianni and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” IEEE J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Abolghasem, J. Han, D. P. Kang, B. J. Bijlani, and A. S. Helmy, “Monolithic photonics using second-order optical nonlinearities in multi-layer core Bragg reflection waveguides,” IEEE J. Sel. Top. Quantum Electron. 18, 812–825 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Int. J. Nonlin. Opt. Phys. (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Alhemyari, C. C. Yang, C. H. Lin, H. H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap—the silicon of nonlinear-optical materials,” Int. J. Nonlin. Opt. Phys. 1994, 347–371 (1994).
[CrossRef]

J. Mod. Opt. (1)

R. Das and K. Thyagarajan, “Broadband parametric amplification in Bragg reflection waveguide,” J. Mod. Opt. 55, 273–279 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

R. Das and K. Thyagarajan, “Anomalous behaviour in a Bragg reflection waveguide,” Opt. Commun. 273, 84–88 (2007).
[CrossRef]

J. Li and K. S. Chiang, “Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors,” Opt. Commun. 281, 5797–5803 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a ridge single-stack BRW with ridge width W and etch depth D used for nonlinear three-mixing processes.

Fig. 2.
Fig. 2.

(a) Schematic of a single-stack ML-BRW, where one of the periodic claddings in symmetric BRWs is replaced by a single layer cladding. The matching layer separates the multilayer core composed of dielectric layers with the refractive indices na,nb,,nl from the quarter-wave Bragg reflector. (b) Conceptual structure where all the layers between the bulk cladding and the matching layer in (a) are represented by an ABCD matrix with elements m11,,m22. QtW, quarter-wave.

Fig. 3.
Fig. 3.

Variation of effective mode indices of TE- and TM-polarized pump and TE-polarized second harmonic as functions of the Bragg mode effective index in BRWIII designed for Type II PM.

Fig. 4.
Fig. 4.

(a) Index profile of BRWIII at the second-harmonic wavelength (solid curve) and that at pump wavelength (dashed curve). The horizontal dashed line indicates PM effective index effective index for Type II SHG. (b) Field profile of TE-polarized pump (dashed curve), TM-polarized pump (dashed–dotted curve) and TE-polarized SH (solid line).

Fig. 5.
Fig. 5.

(a) Variations of effective mode indices of orthogonal polarizations of TE- and TM-polarized pump mode and those of the second-harmonic mode in BRWIII design. The crossing points at P1, P2, and P3 denote the pump wavelengths for Type I, Type II, and Type 0 PM, respectively. (b) Dependency of modal birefringence of the pump and second harmonic on pump wavelength in BRWIII.

Fig. 6.
Fig. 6.

Simulated leakage loss as a function of substrate aluminum concentration in BRWIII of (a) TE- and TM-polarized pump mode and (b) those of the second-harmonic mode.

Fig. 7.
Fig. 7.

Dependence of normalized conversion efficiency, η¯SHG, and nonlinear modal overlap, ξ, on the thickness of top cladding in single-stack BRWIII.

Fig. 8.
Fig. 8.

Modal birefringence between the TE and TM modes of downconverted light and that of the pump (dashed line) simulated at associated PM wavelength. For either pump or downconverted wavelengths, there exists a ridge width for which the device is polarization degenerate with vanishing modal birefringence. Inset, dependence of PM wavelength on ridge width in BRWIII structure.

Fig. 9.
Fig. 9.

Variations of (a) GVM and (b) GVD in BRWIII as functions of ridge width.

Fig. 10.
Fig. 10.

Variation of FWHM spectral bandwidth of anticorrelated photon pairs generated in BRWIII as a function of ridge width.

Tables (3)

Tables Icon

Table 1. Summary of the BRWIII Structure Phase Matched for Type II Second-Harmonic Generation with a Pump at 1540 nm

Tables Icon

Table 2. Simulated Nonlinear Parameters of BRWI, BRWII, and BRWIII for Type II Second-Harmonic Generation

Tables Icon

Table 3. Group Velocity Mismatch and Group Velocity Dispersion of the Pump and Second-Harmonic in BRWI, BRWII, and BRWIII for Type II Second-Harmonic Generation

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

k1xt1=(2u+1)π/2,k2xt2=(2v+1)π/2,
[al+al]=[m11m12m21m22][acladd+acladd].
al+=m12,al=m22.
[am+am]=Tm[al+al].
Tm=12[(1+fP)exp(iϕm)(1fP)exp(iϕ)(1fP)exp(+iϕm)(1fP)exp(+iϕm)],
fP={klxkmxforTEpolarizationnm2klxnl2kmxfor  TMpolarization.
am+=12[(m12+m22)+(m12m22)fP]exp(iϕm),
am=12[(m12+m22)(m12m22)fP]exp(+iϕm).
cot(kmxtm)=+ifTEm12m22m11+m22(kmx<k1x)tan(kmxtm)=ifTEm12m22m11+m22(kmx>k1x).
tm=1kmx[acot(+ifTEm12m22m12+m22)+pπ](kmx<k1x)tm=1kmx[atan(ifTEm12m22m12+m22)+pπ](kmx>k1x).
cot(kmxtm)=+ifTEm12m22m11+m22(n12kmx<nm2k1x)tan(kmxtm)=ifTMm12m22m12+m22(n12kmx>nm2k1x),
tm=1kmx[acot(+ifTMm12m22m12+m22)+pπ](n12kmx<nm2k1x)tm=1kmx[atan(ifTMm12m22m12+m22)+pπ](n12kmx>nm2k1x).
neff,1>ncladd,2ω>ncladd,ω,
neff,2<min{na,nb,nm,n1,n2}2ω,
αleak,ωσ(TE/TM)=4πκleak(TE/TM)/λωσ,
GVM2ω,ω(TE,TM)=1vg,2ω(TE)1vg,ω(TM),
GVDω(TE)=2βω(TE)ω2=2cneff,ω(TE)ω+ωc2neff,ω(TE)ω2.
ΔβGVMω,ω(TE,TM)Ω12[GVDω(TE)+GVDω(TM)]Ω2,

Metrics