Abstract

We report on directionality of a novel optical nanoantenna composed of three gold nanodisks ultracompactly arranged in the end-fire configuration. It is found that the emission of a local light source can be remarkably directed and switched based on its color between two opposite directions. The quasi-static approximation is employed to theoretically model the optical properties of the nanostructure and to investigate the observed phenomenon. The proposed nanoantenna enhances and directs the yellow-color toward the forward-direction, and, in contrast, the red-color toward the backward direction. This unique color-switching property is studied in terms of the strong plasmonic interactions of the nanodisks and the resulting hybridized modes of the nanoantenna.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
    [CrossRef]
  2. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
    [CrossRef]
  3. L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
    [CrossRef]
  4. S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
    [CrossRef]
  5. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
    [CrossRef]
  6. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
    [CrossRef]
  7. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  8. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
    [CrossRef]
  9. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
    [CrossRef]
  10. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
    [CrossRef]
  11. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [CrossRef]
  12. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008).
    [CrossRef]
  13. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
    [CrossRef]
  14. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef]
  15. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
    [CrossRef]
  16. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
    [CrossRef]
  17. J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
    [CrossRef]
  18. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
    [CrossRef]
  19. Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
    [CrossRef]
  20. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35, 4181–4183(2010).
    [CrossRef]
  21. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
    [CrossRef]
  22. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
    [CrossRef]
  23. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25, 659–667 (2008).
    [CrossRef]
  24. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
    [CrossRef]
  25. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
    [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  28. L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  30. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  31. CST Microwave Studio, www.cst.com .
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  33. Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express 16, 13287–13295 (2008).
    [CrossRef]
  34. B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]

2011 (4)

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

2010 (6)

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35, 4181–4183(2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[CrossRef]

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

2009 (2)

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

2008 (7)

2007 (4)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

2006 (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

2005 (1)

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

2004 (1)

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

2003 (2)

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

2000 (1)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Abrishamian, M. S.

Agio, M.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
[CrossRef]

Y. Ekinci, A. Christ, M. Agio, O. J. F. Martin, H. H. Solak, and J. F. Löffler, “Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs,” Opt. Express 16, 13287–13295 (2008).
[CrossRef]

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Bartoli, F. J.

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35, 4181–4183(2010).
[CrossRef]

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Bidault, S.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonod, N.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Brongersma, M. L.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Cao, L. Y.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

Chen, L.

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Chen, S.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

Chong, C.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Christ, A.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clemens, B.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

Coronado, E.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Devilez, A.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[CrossRef]

Ding, Y. J.

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Dmitriev, A.

Dorfmuller, J.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Dorfmüller, J.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

Dregely, D.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Eisler, H. J.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Ekinci, Y.

Engheta, N.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

Eßlinger, M.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

Eurenius, L.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Fan, P. Y.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Farahani, J. N.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

Fluckiger, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

Fu, L.

Fu, Z.

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Gan, Q.

Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35, 4181–4183(2010).
[CrossRef]

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Gasser, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Giessen, H.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16, 7756–7766 (2008).
[CrossRef]

Granpayeh, N.

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

Guo, H.

Guo, P.

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Halas, N. J.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Hecht, B.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Johansson, P.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Käll, M.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25, 659–667 (2008).
[CrossRef]

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kelly, L. K.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kern, K.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Khunsin, W.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Kühn, S.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Liu, N.

Löffler, J. F.

Lounis, B.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[CrossRef]

Lukyanchuk, B.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Ly-Gagnon, D.-S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Maier, S. A.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

Meyrath, T. P.

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[CrossRef]

Mori, G.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Nordlander, P.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Novotny, L.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Olsson, E.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Pakizeh, T.

Park, J. S.

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

Pavius, M.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Pohl, D. W.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rolly, B.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Sandoghdar, V.

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Schatz, G. C.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schweizer, H.

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Sepulveda, B.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Shegai, T.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

Solak, H. H.

Song, G.

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Stefani, F. D.

Stout, B.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[CrossRef]

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

van Hulst, N. F.

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

Vogelgesang, R.

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Zengin, G.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

Zentgraf, T.

Zhao, L. L.

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zheludev, N. I.

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

ACS Nano (1)

A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Gan, P. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Mol. Phys. (1)

S. Kühn, G. Mori, M. Agio, and V. Sandoghdar, “Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching,” Mol. Phys. 106, 893–908 (2008).
[CrossRef]

Nano Lett. (4)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33 (2007).
[CrossRef]

T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef]

L. Y. Cao, J. S. Park, P. Y. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[CrossRef]

J. Dorfmüller, D. Dregely, M. Eßlinger, W. Khunsin, R. Vogelgesang, K. Kern, and H. Giessen, “Near-field dynamics of optical Yagi–Uda nanoantennas,” Nano Lett. 11, 2819–2824 (2011).
[CrossRef]

Nanotechnology (1)

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506 (2007).
[CrossRef]

Nat. Commun. (2)

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef]

D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi–Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[CrossRef]

Nat. Mater. (1)

B. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Nat. Photon. (3)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon. 5, 83–90 (2011).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photon. 2, 226–229 (2008).
[CrossRef]

Nat. Phys. (1)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antenna based on coupled nanoholes in metal films,” Nat. Phys. 3, 884–889 (2007).
[CrossRef]

Nature (1)

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78, 195111 (2008).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[CrossRef]

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef]

Science (2)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Other (4)

CST Microwave Studio, www.cst.com .

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematics of the symmetric (a) and asymmetric (b) nanoantenna structures comprising three Au nanodisks with diameters of D1, D2, and D3, thickness T, and center-to-center separating distance d. The nanoantenna is excited by a Hertzian-dipole placed at point P.

Fig. 2.
Fig. 2.

Optical extinction spectra of the symmetric (dashed-line) nanoantenna with diameter D=2a=80nm and the asymmetric (solid-line) nanoantenna with diameters D1=2a1=60, D2=2a2=80, and D3=2a3=100nm, calculated using the CDA method (a) and the numerical FIT simulations (b). In both the symmetric and the asymmetric cases, the thickness T=2c=20nm, and the nanoparticles are separated with the equal distances d (d=55nm in theory and d=40nm in simulations). Insets show the spatial Ez-field distribution where a plane-wave illuminated from the right-hand side (BW) at λ=580nm, and from the left-hand side (FW) at λ=630nm.

Fig. 3.
Fig. 3.

(a) Amplitude spectra of the Ez-field confined in the smallest element of the proposed nanoantenna upon the plane-wave illuminations from the FW-direction (solid-line) and BW-direction (dashed-line), using the CDA method. (b) Amplitude spectra of the Ez-field radiated by the nanoantenna to the far field in the FW- and BW-direction, obtained by the numerical simulations. Inset in (a) shows the directionality KFB and in (b) shows the directionality GFB of the nanoantenna.

Fig. 4.
Fig. 4.

(a) Comparison between GFB and KFB of the proposed nanoantenna in the symmetric (dashed-line) and asymmetric (solid-line) cases with the interparticles distance d=40nm. (b) The directionality GFB of the asymmetric nanoantenna for different interparticle distances d=35 (dashed-line), 40 (solid-line), and 45 nm (dash-dot line).

Fig. 5.
Fig. 5.

The radiation θ-pattern of the proposed nanoantenna with d=40nm at λ=580nm (a), and λ=630nm (b). The high directionality is switched from the BW-direction toward the FW-direction when the operating wavelength is changed from 580 to 630 nm. (c) Schematic representation of the observed color-switched directionality effect.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pi(ω)=αi(ω)[E0(r,ω)+j=1,jin(Aij(r,ω)Pj(ω))],
Cext=4πk|E0|2j=13Im{E0,rj*.Pj},
GFB=10×log10(SFW/SBW),
KFB10×log10[|α˜zz,1|FW2/|α˜zz,1|BW2],

Metrics