Abstract

We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be “known” and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
    [CrossRef]
  2. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
    [CrossRef]
  3. B. A. Richman, K. W. DeLong, and R. Trebino, “Temporal characterization of the Stanford mid-IR FEL micropulses by ‘FROG’,” Nucl. Instrum. Methods Phys. Res. A 358, 268–271 (1995).
  4. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  5. R. J. Steriti and M. A. Fiddy, “Blind deconvolution of images by use of neural networks,” Opt. Lett. 19, 575–577(1994).
    [CrossRef]
  6. K. W. DeLong, R. Trebino, and W. E. White, “Simultaneous recovery of two ultrashort laser pulses from a single spectrogram,” J. Opt. Soc. Am. B 12, 2463–2466 (1995).
    [CrossRef]
  7. J. J. Field, C. G. Durfee, and J. A. Squier, “Blind frequency-resolved optical-gating pulse characterization for quantitative differential multiphoton microscopy,” Opt. Lett. 35, 3369–3371(2010).
    [CrossRef]
  8. D. J. Kane, G. Rodriguez, A. J. Taylor, and T. S. Clement, “Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot,” J. Opt. Soc. Am. B 14, 935–943 (1997).
    [CrossRef]
  9. B. Seifert, H. Stolz, and M. Tasche, “Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness,” J. Opt. Soc. Am. B 21, 1089–1097 (2004).
    [CrossRef]
  10. J. H. Seldin and J. R. Fienup, “Iterative blind deconvolution algorithm applied to phase retrieval,” J. Opt. Soc. Am. A 7, 428–433 (1990).
    [CrossRef]
  11. S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).
  12. A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
    [CrossRef]
  13. J.-Y. Zhang, C.-K. Lee, J. Y. Huang, and C.-Y. Pan, “Sub-femto-joule sensitive single-shot OPA-XFROG and its application in study of white-light supercontinuum generation,” Opt. Express 12, 574–581 (2004).
  14. S. Birger and S. Heinrich, “A method for unique phase retrieval of ultrafast optical fields,” Meas. Sci. Technol. 20, 015303 (2009).
  15. K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
    [CrossRef]
  16. H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
    [CrossRef]
  17. D. N. Fittinghoff, K. W. DeLong, R. Trebino, and C. L. Ladera, “Noise sensitivity in frequency-resolved optical-gating measurements of ultrashort pulses,” J. Opt. Soc. Am. B 12, 1955–1967 (1995).
    [CrossRef]
  18. D. Lee, Z. Wang, X. Gu, and R. Trebino, “Effect and removal of an ultrashort pulse’s spatial profile on the single-shot measurement of its temporal profile,” J. Opt. Soc. Am. B 25, A93–A100 (2008).
    [CrossRef]

2010 (2)

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

J. J. Field, C. G. Durfee, and J. A. Squier, “Blind frequency-resolved optical-gating pulse characterization for quantitative differential multiphoton microscopy,” Opt. Lett. 35, 3369–3371(2010).
[CrossRef]

2009 (1)

S. Birger and S. Heinrich, “A method for unique phase retrieval of ultrafast optical fields,” Meas. Sci. Technol. 20, 015303 (2009).

2008 (1)

2004 (2)

2003 (1)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

2002 (1)

2001 (1)

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

1998 (2)

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).

1997 (1)

1995 (3)

1994 (1)

1990 (1)

Birger, S.

S. Birger and S. Heinrich, “A method for unique phase retrieval of ultrafast optical fields,” Meas. Sci. Technol. 20, 015303 (2009).

Cao, Q.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

Clement, T. S.

DeLong, K. W.

Dudley, J.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

Durfee, C. G.

Fiddy, M. A.

Field, J. J.

Fienup, J. R.

Fittinghoff, D. N.

Fuji, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Gindele, F.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Grun, M.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Gu, X.

Heinrich, S.

S. Birger and S. Heinrich, “A method for unique phase retrieval of ultrafast optical fields,” Meas. Sci. Technol. 20, 015303 (2009).

Hetterich, M.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Huang, J. Y.

Kane, D. J.

Kim, K. T.

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

Kimmel, M.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

Klingshirn, C.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Knorr, A.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Ko, D. H.

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

Kobayashi, T.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Koch, S. W.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Ladera, C. L.

Lee, C.-K.

Lee, D.

Linden, S.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).

Nam, C. H.

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

O’Shea, P.

Pan, C.-Y.

Park, J.

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

Petillon, S.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Peyghambarian, N.

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Richman, B. A.

B. A. Richman, K. W. DeLong, and R. Trebino, “Temporal characterization of the Stanford mid-IR FEL micropulses by ‘FROG’,” Nucl. Instrum. Methods Phys. Res. A 358, 268–271 (1995).

Rodriguez, G.

Seifert, B.

Seldin, J. H.

Shreenath, A. P.

Squier, J. A.

Steriti, R. J.

Stolz, H.

Tasche, M.

Taylor, A. J.

Tosa, V.

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

Trebino, R.

Wang, Z.

White, W. E.

Windeler, R. S.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

Xu, L.

Yabushita, A.

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Zeek, E.

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002).
[CrossRef]

Zhang, J.-Y.

Appl. Phys. B (1)

Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8 mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Meas. Sci. Technol. (1)

S. Birger and S. Heinrich, “A method for unique phase retrieval of ultrafast optical fields,” Meas. Sci. Technol. 20, 015303 (2009).

New J. Physics (1)

K. T. Kim, D. H. Ko, J. Park, V. Tosa, and C. H. Nam, “Complete temporal reconstruction of attosecond high-harmonic pulse trains,” New J. Physics 12, 083019 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

B. A. Richman, K. W. DeLong, and R. Trebino, “Temporal characterization of the Stanford mid-IR FEL micropulses by ‘FROG’,” Nucl. Instrum. Methods Phys. Res. A 358, 268–271 (1995).

Opt. Commun. (1)

A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Stat. Sol. (1)

H. Giessen, S. Linden, J. Kuhl, A. Knorr, S. W. Koch, F. Gindele, M. Hetterich, M. Grun, S. Petillon, C. Klingshirn, and N. Peyghambarian, “Coherent high-intensity pulse propagation on a free exciton resonance in a semiconductor,” Phys. Stat. Sol. 206, 27–36 (1998).
[CrossRef]

Phys. Stat. Sol. B (1)

S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Stat. Sol. B 206, 119–124 (1998).

Other (1)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

The schematic of single-shot DB PG FROG. One pulse gates the other, while the other gates the one. Two spectrograms are generated, from which both pulses are retrieved without additional information or assumptions.

Fig. 2.
Fig. 2.

Pulse-retrieval algorithm in DB PG FROG.

Fig. 3.
Fig. 3.

Simulations of double-blind polarization-gating FROG for two complex pulses. The two “measured” traces are shown in (a) and (b) above and below. The retrieved intensities and phases are shown in (c) and (d) by the solid-color lines. The actual intensity and phase of the simulated pulses are shown as dashed black lines. Both of these simulated complex pulses have time-bandwidth products of about 7 and 1% additive Poisson noise was added to the simulated traces to simulate noisy measurements.

Fig. 4.
Fig. 4.

(a) The measured trace 1 for a simple pulse. (b) Retrieved trace 1 with a FROG error of 0.3%. (c) Retrieved pulse intensity and phase in time compared with an independent GRENOUILLE measurement. (d) The measured spectrum and the spectral phase compared with GRENOUILLE.

Fig. 5.
Fig. 5.

(a) The measured trace 2 for another simple pulse. (b) Retrieved trace 2 with a FROG error of 0.2%. (c) Retrieved pulse intensity and phase in time compared with an independent GRENOUILLE measurement. (d) The measured spectrum and the spectral phase compared with GRENOUILLE.

Fig. 6.
Fig. 6.

(a) The measured trace 1 for a simple pulse. (b) Retrieved trace 1 with a FROG error of 0.2%. (c) Retrieved pulse intensity and phase in time compared with an independent GRENOUILLE measurement. (d) The measured spectrum and the spectral phase compared with GRENOUILLE measurements.

Fig. 7.
Fig. 7.

(a) The measured trace 2 for a simple pulse with more chirp. (b) Retrieved trace 2 with a FROG error of 0.3%. (c) Retrieved pulse intensity and phase in time compared with an independent GRENOUILLE measurement. (d) The measured spectrum and the spectral phase compared with GRENOUILLE measurements.

Fig. 8.
Fig. 8.

(a) The measured DB PG FROG trace 1 for the simple pulse. (b) Retrieved trace 1 with a FROG error of 0.2%. (c) Retrieved pulse intensity and phase in time compared with a GRENOUILLE measurement. (d) The measured spectrum and the spectral phase.

Fig. 9.
Fig. 9.

(a) The measured trace 2 for the pulse train from etalon. (b) Retrieved trace 2 with a FROG error of 0.3%. (c) Retrieved pulse intensity and phase in time: peak locations occur at 0 fs, 152 fs, and 319 fs in agreement with GRENOUILLE measurements. (d) The measured spectrum and the spectral phase compared with GRENOUILLE measurements.

Fig. 10.
Fig. 10.

(a) The measured DB PG FROG trace 1 for the chirped pulse. (b) Retrieved trace 1 with a FROG error of 0.2%. (c) Retrieved pulse intensity and phase in time compared with a GRENOUILLE measurement. (d) The measured spectrum and the spectral phase.

Fig. 11.
Fig. 11.

(a) The measured trace 2 for the pulse train from etalon. (b) Retrieved trace 2 with a FROG error of 0.4%. (c) Retrieved pulse intensity and phase in time: peak locations occur at 0 fs, 157 fs, and 318 fs in agreement with a GRENOUILLE measurements. (d) The measured spectrum and the spectral phase compared with GRENOUILLE measurements.\

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I1(ω,τ)=|E1(t)|E2(tτ)|2eiωtdt|2
I2(ω,τ)=|E2(t)|E1(tτ)|2eiωtdt|2.

Metrics