Abstract

One of the unique features of mirrorless optical parametric oscillators based on counterpropagating three-wave interactions is the narrow spectral width of the wave generated in the backward direction. In this work, we investigate experimentally and numerically the influence that a strong phase modulation in the pump has on the spectral bandwidths of the parametric waves and on the efficiency of the nonlinear interaction. The effects of group-velocity mismatch and group-velocity dispersion are elucidated. In particular, it is shown that the substantial increase in temporal coherence of the backward-generated wave can be obtained even for pumping with a temporally incoherent pump. A configuration of a mirrorless optical parametric oscillator is proposed where this gain in spectral coherence is maximized without a penalty in conversion efficiency by employing group-velocity matching of the pump and the forward-generated parametric wave.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).
  2. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon.. 1, 459–462 (2007).
  3. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).
  4. M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).
  5. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
  6. V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).
  7. A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001).
  8. A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).
  9. C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).
  10. A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).
  11. C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24, 2796–2806 (2007).
  12. G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).
  13. Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).
  14. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. Suppl. 41, 5040 (2002).
  15. C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).
  16. C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).
  17. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
  18. E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).
  19. A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).
  20. A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).
  21. K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

2011 (3)

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

2010 (1)

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).

2008 (1)

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

2007 (2)

2005 (2)

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

2004 (1)

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).

2003 (1)

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

2002 (2)

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. Suppl. 41, 5040 (2002).

2001 (1)

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001).

2000 (1)

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

1997 (2)

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).

1996 (1)

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).

1991 (2)

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

1966 (1)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).

Aschieri, P.

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).

Bahloul, D.

C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).

Botineau, J.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Canalias, C.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

Ding, Y. J.

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).

Eken, Koray

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Ezekiel, S.

Fokine, M.

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

Gallo, K.

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).

Ginovart, F.

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

Grundkötter, W.

Haelterman, M.

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001).

Harris, S. E.

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).

Ilday, F. Ö.

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Kato, K.

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. Suppl. 41, 5040 (2002).

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).

Laurell, F.

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

Legrand, O.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Leycuras, C.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Mikhailov, A.

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

Montes, C.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24, 2796–2806 (2007).

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Öktem, B.

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Özgören, K.

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Pasiskevicius, V.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

Picholle, E.

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Picozzi, A.

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001).

C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

Piskarskas, A.

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).

Pyragaite, V.

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).

Risk, W. P.

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

Smith, S. P.

Sohler, W.

Stabinis, A.

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).

Strömqvist, G.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

Suche, H.

Takaoka, E.

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. Suppl. 41, 5040 (2002).

Tamošauskas, G.

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

Xiaodong, M.

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

Yilmaz, S.

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Zarinetchi, F.

Zotova, I. B.

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

Appl. Opt. Suppl. (1)

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. Suppl. 41, 5040 (2002).

Appl. Phys. Lett. (3)

S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl. Phys. Lett. 9, 114–116 (1966).

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4236 (2003).

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase matched second harmonic generation in sub-micrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).

IEEE J. Quantum Electron. (1)

Y. J. Ding and J. B. Khurgin, “Backward optical parametric oscillators and amplifiers,” IEEE J. Quantum Electron. 32, 1574–1582 (1996).

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photon.. 1, 459–462 (2007).

Opt. Commun. (2)

M. Xiaodong, I. B. Zotova, Y. J. Ding, and W. P. Risk, “Backward second-harmonic generation in submicron-period ion-exchanged KTiOPO4 waveguide,” Opt. Commun. 181, 153–159(2000).

C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004).

Opt. Express (1)

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and Koray Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 18, 17647–17652 (2011).

Opt. Lett. (1)

Phys. Rev. A (3)

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011).

A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010).

A. Stabinis, V. Pyragaite, G. Tamošauskas, and A. Piskarskas, “Spectrum of second-harmonic radiation generated from incoherent light,” Phys. Rev. A 84, 043813 (2011).

Phys. Rev. E (4)

A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005).

C. Montes, A. Mikhailov, A. Picozzi, and F. Ginovart, “Dissipative three-wave structures in stimulated backscattering. I. A subluminous solitary attractor,” Phys. Rev. E 55, 1086–1091 (1997).

C. Montes, A. Picozzi, and D. Bahloul, “Dissipative three-wave structures in stimulated backscattering. II. Superluminous and subluminous solitons,” Phys. Rev. E 55, 1092–1106 (1997).

A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002).

Phys. Rev. Lett. (2)

A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013 (2001).

E. Picholle, C. Montes, C. Leycuras, O. Legrand, and J. Botineau, “Observation of dissipative superluminous solitons in a Brillouin fiber ring laser,” Phys. Rev. Lett. 66, 1454–1457 (1991).

Proc. SPIE (1)

V. Pasiskevicius, C. Canalias, G. Strömqvist, and F. Laurell, “Mirrorless OPO: first steps towards unlocking the potential of counter-propagating three-wave interactions” (invited), Proc. SPIE 6875, 687508 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The pump beam is focused inside the PPKTP crystal, generating a signal in the forward direction and an idler in the backward direction, as illustrated in the phase-matching diagram. The parametric beams overlap the pump beam, but have been displaced vertically in the figure. All beams are polarized in the z direction.

Fig. 2.
Fig. 2.

Experimental spectra corresponding to the narrowband pump at 814.5 nm (left panel) and the broadband pump at 858.0 nm (right panel). (a) Undepleted (solid line) and depleted (dotted line) pump spectra with initial FWHM spectral widths of Δνp=1.08THz and Δνp=3.98THz. (b) Forward signals around 1126.3 nm (Δνf=320GHz) and 1217.9 nm (Δνf=1.62THz). (c) Backward idlers around 2952.0 nm (Δνb=27GHz) and 2945.7 nm (Δνb=59GHz).

Fig. 3.
Fig. 3.

(a) Undepleted input and depleted output pump spectrum of Δνp=4.04THz, (b) the forward signal spectrum with Δνf=1.78THz, and (c) the backward idler spectrum with Δνb=51GHz.

Fig. 4.
Fig. 4.

Phase distributions inside the crystal for the pump, the forward signal (locked to the pump) and the backward idler (invariant) at the time t=141ps. (a) Describes the experimental conditions, ε19.8×103 and (b) describes the case of ideal group-velocity matching, ε1=0.

Fig. 5.
Fig. 5.

Pump depletion, 1Ip(L)/Ip(0), and conversion efficiencies for the signal, If(L)/Ip(0), and for the idler, Ib(0)/Ip(0), in the MOPO as function of the pump bandwidth for linearly chirped pulses at the pump intensity of Ip=2.57GW/cm2. The three lower curves correspond to the experimental condition, ε19.8×103, which clearly show a decrease in the efficiency as the pump bandwidth increases. The upper curve shows that the pump depletion is essentially independent of the pump bandwidth when ε1=0. The pump depletion for the stochastic pump at the intensities of 2.57GW/cm2 (black triangle) and 3.5GW/cm2 (black diamond) are also marked in the graph.

Fig. 6.
Fig. 6.

Temporal evolution of the amplitudes in a MOPO with the interacting wavelengths in Table 1, pumped with pulses of stochastic phase modulation and a bandwidth of Δνp=4.04THz: (a) the forward pump, (b) the forward signal, and (c) the backward idler.

Fig. 7.
Fig. 7.

(a) Incoherent pump spectrum with a bandwidth of Δνp=4.04THz, (b) the signal spectrum with Δνf=1.42THz, and (c) the backward idler spectrum with Δνb=33GHz.

Fig. 8.
Fig. 8.

Group velocity (solid line) and group-velocity dispersion (dashed line) for z-polarized waves in KTiOPO4 as function of the wavelength, calculated from the Sellmeier expansion in [14]. The symbols denote the pump (circle), the forward wave (triangle) and the backward wave (square) at the wavelengths in Table 1 (open symbols) and Table 2 (solid symbols).

Fig. 9.
Fig. 9.

Temporal evolution of the amplitudes in a MOPO with the interacting wavelengths in Table 2, pumped with pulses of stochastic phase modulation and a bandwidth of Δνp=23THz: (a) the forward pump, (b) the backward signal, and (c) the forward idler.

Fig. 10.
Fig. 10.

(a) Incoherent pump spectrum with a bandwidth of Δνp=23THz, (b) the backward signal spectrum with Δνb=23GHz, (c) the forward idler spectrum with Δνf=10THz.

Tables (2)

Tables Icon

Table 1. Dispersion Data for z-Polarized Waves in KTiOPO4a

Tables Icon

Table 2. Dispersion Data for z-Polarized Waves in KTiOPO4a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ωp=ωf+ωb,
kpkf+kb=KG,
Ip,th=cε0npnfnbλfλb2L2deff2,
ωfωp=vg,f(vg,p+vg,b)vg,p(vg,f+vg,b)1+ε1,
ωbωp=vg,b(vg,pvg,f)vg,p(vg,f+vg,b)ε1.
ωfωpωfωp+2ωfωp2δωp1+ε1+ε2δωp,
ωbωpωbωp+2ωbωp2δωpε1ε2δωp.
ε22ωfωp2=2ωbωp2=vg,fvg,bvg,f+vg,b[β2,f(ωfωp)2β2,pβ2,b(ωbωp)2].
(t+vg,px+γp+iβptt)Ap=σpAfAb(t+vg,fx+γf+iβftt)Af=σfApAb*(tvg,bx+γb+iβbtt)Ab=σbApAf*,
Ap(x=0,t)=Ap0exp[iϕp(tt0)]exp{2ln2[(tt0)/Δt0]2}.
Ap(x=0,t+t)Ap*(x=0,t)=|Ap|2exp(|t|/τc),

Metrics