Abstract

The benefits of unusual dispersive properties of photonic crystals are often mitigated by unwanted phenomena like spatial broadening of propagating beams. This problem is usually faced using millimeter long conditioning regions to precompensate for beam spreading. A new approach is explored here to manage the strong diffraction of photonic superprisms without preconditioning regions. Unconventional photonic crystal lattice cells are engineered using plane wave expansion calculations, and two photonic crystals having both positive dispersions but diffraction properties of opposite signs are selected. Light propagation in the combined photonic structure is studied using finite difference time domain simulation to validate the predicted dispersion accumulation and diffraction compensation approach.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).
  2. D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express 16, 17209–17214 (2008).
    [CrossRef]
  3. B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).
  4. T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56–59 (2006).
    [CrossRef]
  5. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
    [CrossRef]
  6. T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Opt. Express 13, 10768–10776 (2005).
    [CrossRef]
  7. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
    [CrossRef]
  8. A. Khorshidahmad and A. G. Kirk, “Composite superprism photonic crystal demultiplexer: analysis and design,” Opt. Express 18, 20518–20528 (2010).
    [CrossRef]
  9. J. Dellinger, D. Bernier, B. Cluzel, X. Le Roux, A. Lupu, F. de Fornel, and E. Cassan, “Near field direct experimental observation of beam steering in a photonic crystal superprism,” Opt. Lett. 36, 1074–1076 (2011).
    [CrossRef]
  10. M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
    [CrossRef]
  11. MIT Photonic Band (MPB), http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .
  12. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
    [CrossRef]
  13. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
    [CrossRef]
  14. D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
    [CrossRef]

2011 (1)

2010 (2)

A. Khorshidahmad and A. G. Kirk, “Composite superprism photonic crystal demultiplexer: analysis and design,” Opt. Express 18, 20518–20528 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

2009 (1)

D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
[CrossRef]

2008 (1)

2006 (2)

2005 (2)

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

T. Matsumoto, S. Fujita, and T. Baba, “Wavelength demultiplexer consisting of photonic crystal superprism and superlens,” Opt. Express 13, 10768–10776 (2005).
[CrossRef]

2002 (2)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Adibi, A.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Askari, M.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Baba, T.

Bassi, P.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Benisty, H.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Berger, V.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

Bernier, D.

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Cassan, E.

Cluzel, B.

Colvin, V. L.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56–59 (2006).
[CrossRef]

de Fornel, F.

de Sterke, C. M.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Dellinger, J.

Eggleton, B. J.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Fujita, S.

Gerard, J.-M.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Grillet, C.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Hosseini, E. S.

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Huang, J.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

Khorshidahmad, A.

Kirk, A. G.

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

Le Roux, X.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Lourtioz, J. M.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Lupu, A.

Marris-Morini, D.

D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
[CrossRef]

D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express 16, 17209–17214 (2008).
[CrossRef]

Matsumoto, T.

Maystre, D.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Mazilu, M.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

McPhedran, R. C.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Mittleman, D. M.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56–59 (2006).
[CrossRef]

Mohammadi, S.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Momeni, B.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Norton, A.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

Prasad, T.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56–59 (2006).
[CrossRef]

Rakhshandehroo, M.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

Roux, Le

D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Soltani, M.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Steel, M. J.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Tchelnokov, A.

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

Vivien, L.

D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
[CrossRef]

D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express 16, 17209–17214 (2008).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

Zoli, R.

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181 (3), 687–702 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[CrossRef]

Opt. Eng. (1)

D. Bernier, E. Cassan, Le Roux, D. Marris-Morini, and L. Vivien, “Efficient band-edge light injection in two dimensional planar photonic crystals using a gradual interface,” Opt. Eng. 48, 070501 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 56–59 (2006).
[CrossRef]

Phys. Rev. E (2)

M. J. Steel, R. Zoli, C. Grillet, R. C. McPhedran, C. M. de Sterke, A. Norton, P. Bassi, and B. J. Eggleton, “Analytic properties of photonic crystal superprism parameters,” Phys. Rev. E 71, 056608 (2005).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608–15 (2002).
[CrossRef]

Other (3)

J. M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals—Towards Nanoscale Photonic Devices, 2nd ed. (Springer, 2008).

MIT Photonic Band (MPB), http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands .

B. Momeni, E. S. Hosseini, M. Askari, S. Mohammadi, M. Soltani, and A. Adibi, “Chip-scale photonic crystal spectrometers with high resolution for lab-on-a-chip sensing applications,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO), printed ISBN: 978-1-55752-834-6 (Optical Society of America, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed approach to manage the beam broadening issue of PhC superprisms. (a) Schematic picture of the desired two prism configuration: the envelop of the beam for each wavelength is represented by two “extreme” rays (two rays in blue color for ω1 and two rays in red color for ω2). (b) Definitions of the q and p dispersion and divergence parameters. (c) Schematic picture of the desired conditions on q1, p1 and q2, p2 of the two PhCs (PhC1 and PhC2), respectively.

Fig. 2.
Fig. 2.

EFSs of PhC1 in band 1, with specific regions in reciprocal space highlighted by different colors: q1>10 in red, p1<0 in blue, (q1>10 and p1<0) in green. Black regions correspond to electromagnetic modes that cannot be excited from the input slab optical waveguide.

Fig. 3.
Fig. 3.

Dispersion properties of PhC1 for a θi=10° input beam angle: (a) dispersion parameter, (b) divergence parameter, (c) refraction angle.

Fig. 4.
Fig. 4.

EFSs of PhC2 in band 2, with specific regions in reciprocal space highlighted by different colors: q2>0 in red, p2>10 in blue, (q2>0 and p2>10) in green. Surrounding black regions correspond to electromagnetic modes that cannot be excited from the input slab optical waveguide, while the central black one corresponds to solutions located above the light line.

Fig. 5.
Fig. 5.

Dispersion properties of PhC2 for a θi=29° input beam angle: (a) dispersion parameter, (b) divergence parameter, (c) refraction angle.

Fig. 6.
Fig. 6.

Dispersion properties of both PhCs derived from Figs. 3 and 5 for lattice parameters a1=375nm and a2=550nm, respectively: (a) dispersion parameters, (b) divergence parameters.

Fig. 7.
Fig. 7.

Light propagation across PhC1 only: steady-state electromagnetic field calculated at three different frequencies ω=a1/λ using FDTD simulation (Gaussian beam source with an intensity waist of 5a1, input beam angles of 10°). The limits of the PhC areas have been highlighted in dotted white lines.

Fig. 8.
Fig. 8.

Light propagation across a combination of PhC1 and PhC2 areas (identical optical source as for Fig. 7, input beams of 10° and 29° at the two PhC interfaces, respectively, with ω=a1/λ). The limits of the PhC areas have been highlighted in dotted white lines.

Fig. 9.
Fig. 9.

Light beam intensity profiles along the vertical (y) direction for ω=ω1=0.245 (λ1=1530nm) and ω=ω2=0.245 (λ2=1500nm), respectively, at two adjusted output positions after the second PhC area (as shown in Fig. 8). For clarity, beam intensities have been normalized by the maximum intensity value of the ω1 beam.

Metrics