Abstract

A detailed analysis of the optical properties of photonic structures of metal-coated chiral spheres, calculated by the full electrodynamic layer-multiple-scattering method, is presented. Easily tunable narrow bands, originating from particle-like plasmon modes of the metallic shells, hybridize with the extended bands of the underlying effective chiral medium and give rise to sizable partial gaps and strong band bending with consequent negative-slope dispersion. The photonic band diagram is discussed in the light of group theory, in conjunction with relevant transmission spectra, and the occurrence of polarization-selective transmission and negative refraction for a short range of angles of incidence is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
    [CrossRef]
  2. I. E. Psarobas, N. Stefanou, and A. Modinos, “Photonic crystals of chiral spheres,” J. Opt. Soc. Am. A 16, 343–347 (1999).
    [CrossRef]
  3. C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
    [CrossRef]
  4. A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
    [CrossRef]
  5. U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002).
    [CrossRef]
  6. A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
    [CrossRef]
  7. A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
    [CrossRef]
  8. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
    [CrossRef]
  9. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [CrossRef]
  10. C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
    [CrossRef]
  11. S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
    [CrossRef]
  12. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  13. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
    [CrossRef]
  14. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
    [CrossRef]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  16. T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
    [CrossRef]
  17. C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
    [CrossRef]
  18. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
  19. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, 1994).
  20. Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
    [CrossRef]
  21. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  22. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
    [CrossRef]
  23. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
    [CrossRef]
  24. N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
    [CrossRef]
  25. C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
    [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids (North-Holland, 1969).
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2011 (1)

A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
[CrossRef]

2010 (3)

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

2009 (2)

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

2008 (2)

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
[CrossRef]

N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
[CrossRef]

2005 (1)

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

2004 (2)

T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

2003 (3)

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

2002 (1)

U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

1999 (2)

I. E. Psarobas, N. Stefanou, and A. Modinos, “Photonic crystals of chiral spheres,” J. Opt. Soc. Am. A 16, 343–347 (1999).
[CrossRef]

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

1997 (2)

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

1974 (1)

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aoki, M.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).

Bai, Q.

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

Bao, Y. J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bosshard, C.

U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002).
[CrossRef]

Chan, C. T.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Chen, Y. F.

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

Chistyaev, V. A.

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Chongjun, J.

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

Christofi, A.

A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cornwell, J. F.

J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids (North-Holland, 1969).

Date, M.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

de Abajo, F. J. G.

T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
[CrossRef]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Fan, T.

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Forester, D. W.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

Fukada, E.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Gantzounis, G.

A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
[CrossRef]

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
[CrossRef]

N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
[CrossRef]

Gubler, U.

U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

He, C.

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

Hosoya, R.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kisel, V. N.

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Lagarkov, A. N.

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, 1994).

Li, H.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Li, Z. F.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Lu, M. H.

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

Lu, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Lu, X. C.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Maruyama, T.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Maslovski, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).

Miao, Y.

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

Ming, N. B.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

I. E. Psarobas, N. Stefanou, and A. Modinos, “Photonic crystals of chiral spheres,” J. Opt. Soc. Am. A 16, 343–347 (1999).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Monzon, C.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

Nefedov, I.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

Peng, R. W.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Popov, V. V.

T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Psarobas, I. E.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Ruhu, Q.

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

Ryabov, D. E.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Semenenko, V. N.

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Shao, J.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Shikinami, Y.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Sihvola, A.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

Simovski, C.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

Simovski, C. R.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Stefanou, N.

A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
[CrossRef]

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
[CrossRef]

N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

I. E. Psarobas, N. Stefanou, and A. Modinos, “Photonic crystals of chiral spheres,” J. Opt. Soc. Am. A 16, 343–347 (1999).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Sun, C.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Sun, W. H.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Tajitsu, Y.

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

Teperik, T. V.

T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
[CrossRef]

Tretyakov, S.

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

Tretyakov, S. A.

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

Tserkezis, C.

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
[CrossRef]

N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
[CrossRef]

Wang, M.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Wei, Z.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Wu, C.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Xiong, X.

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

Yannopapas, V.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yin, R. C.

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

Yu, X.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhang, W.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

C. F. Bohren, “Light scattering by an optically active sphere,” Chem. Phys. Lett. 29, 458–462 (1974).
[CrossRef]

Comput. Phys. Commun. (2)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000).
[CrossRef]

Electromagnetics (1)

A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, D. E. Ryabov, S. A. Tretyakov, and C. R. Simovski, “Resonance properties of Bi-Helix media at microwaves,” Electromagnetics 17, 213–237 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. He, M. H. Lu, R. C. Yin, T. Fan, and Y. F. Chen, “Chiral properties in a two-dimensional chiral polaritonic photonic crystal,” J. Appl. Phys. 108, 073103 (2010).
[CrossRef]

J. Electromagn. Waves. Appl. (1)

S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy in chiral nihility,” J. Electromagn. Waves. Appl. 17, 695–706 (2003).
[CrossRef]

J. Magn. Magn. Mater. (1)

A. N. Lagarkov, V. N. Semenenko, V. N. Kisel, and V. A. Chistyaev, “Development and simulation of microwave artificial magnetic composites utilizing nonmagnetic inclusions,” J. Magn. Magn. Mater. 258–259, 161–166 (2003).
[CrossRef]

J. Mater. Sci. Lett. (1)

Y. Tajitsu, R. Hosoya, T. Maruyama, M. Aoki, Y. Shikinami, M. Date, and E. Fukada, “Huge optical rotatory power of uniaxially oriented film of poly-L-lactic acid,” J. Mater. Sci. Lett. 18, 1785–1787 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Condens. Matter (1)

C. Tserkezis, G. Gantzounis, and N. Stefanou, “Collective plasmonic modes in ordered assemblies of metallic nanoshells,” J. Phys. Condens. Matter 20, 075232 (2008).
[CrossRef]

Nat. Mater. (1)

U. Gubler and C. Bosshard, “Optical material: a new twist for nonlinear optics,” Nat. Mater. 1, 209–210 (2002).
[CrossRef]

Opt. Commun. (1)

J. Chongjun, Q. Bai, Y. Miao, and Q. Ruhu, “Two-dimensional photonic band structure in the chiral medium transfer matrix method,” Opt. Commun. 142, 179–183 (1997).
[CrossRef]

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

T. V. Teperik, V. V. Popov, and F. J. G. de Abajo, “Radiative decay of plasmons in a metallic nanoshell,” Phys. Rev. B 69, 155402 (2004).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Construction of a chiral metamaterial with a U-shaped resonator assembly,” Phys. Rev. B 81, 075119 (2010).
[CrossRef]

A. Christofi, N. Stefanou, and G. Gantzounis, “Photonic eigenmodes and light propagation in periodic structures of chiral nanoparticles,” Phys. Rev. B 83, 245126 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, Phys. Rev. Lett. 105, 247401 (2010).
[CrossRef]

Proc. SPIE (1)

N. Stefanou, C. Tserkezis, and G. Gantzounis, “Plasmonic excitations in ordered assemblies of metallic nanoshells,” Proc. SPIE 6989, 698910 (2008).
[CrossRef]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

Other (5)

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).

A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, 1994).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. F. Cornwell, Group Theory and Electronic Energy Bands in Solids (North-Holland, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The scattering cross section of a spherical particle consisting of a chiral core (βc=1.5c/ωp, ϵc=2, μc=1) of radius Sc=3c/ωp, coated by a metallic shell, of thickness D=0.3c/ωp, described by the Drude dielectric function without dissipative losses and μm=1. The particle is embedded in air. Solid and dotted lines denote particle-like plasmon and chiral resonances, respectively.

Fig. 2.
Fig. 2.

The photonic band structure of an fcc crystal, with lattice constant a=10c/ωp, of chiral spheres (βc=1.5c/ωp, ϵc=2, μc=1) of radius Sc=3c/ωp, coated with a metallic shell, of thickness D=0.3c/ωp, described by the Drude dielectric function without dissipative losses and μm=1, along the [001] direction.

Fig. 3.
Fig. 3.

The photonic band structure of the crystal under consideration for k=(0.15,0)2π/a0. An enlarged view of the dispersion diagram in regions A, B, C is shown in the margin.

Fig. 4.
Fig. 4.

The photonic band structure of Fig. 3 for positive values of kz (left-hand diagram) and the corresponding transmission spectra of a (001) slab of the crystal, four layers thick, for LCP (red line) and RCP (blue line) incident light (middle diagram). The right-hand diagram displays the corresponding transmission spectra if the metallic shell is described by the experimental dielectric function of bulk silver [28], which includes dissipative losses. The variation of the transmittance of this slab versus the angle of incidence, θ, for RCP incident light of frequency ω=1.8eV is shown in the inset.

Fig. 5.
Fig. 5.

Isofrequency contours in the kxkz plane (ky=0) for the crystal under consideration. The shaded rectangle shows the projection of the Brillouin zone on this plane.

Fig. 6.
Fig. 6.

Isofrequency-contour analysis of the refraction of light of angular frequency ω=0.214ωp incident from air on the xy surface of the crystal under study with ky=0. The wavevectors and group velocities of the incident (i), reflected (r), and transmitted (t) waves are indicated by long and short arrows, respectively. An enlarged view of the transmitted wavevector and group velocity is displayed in the margin. The dotted horizontal line in the top diagrams is the kx-conservation line. Negative refraction in real space is shown in the bottom diagram.

Fig. 7.
Fig. 7.

Isofrequency-contour analysis of the refraction of light of angular frequency ω=0.214ωp incident from air on the yz surface of the crystal under study with ky=0. The wavevectors and group velocities of the incident (i), reflected (r), and transmitted (t) waves are indicated by long and short arrows, respectively. An enlarged view of the transmitted wavevector and group velocity is displayed in the margin. The dotted horizontal line in the top diagrams is the kz-conservation line. Negative refraction in real space is shown in the bottom diagram.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ϵm(ω)=1ωp2ω(ω+iτ1),
D(r,t)=ϵcϵ0[E(r,t)+βc×E(r,t)],
B(r,t)=μcμ0[H(r,t)+βc×H(r,t)],
TEE;l=UL;lCR;l+UR;lCL;lUL;lVR;l+UR;lVL;l,
THH;l=VL;lDR;l+VR;lDL;lUL;lVR;l+UR;lVL;l,
TEH;l=iUL;lDR;lUR;lDL;lUL;lVR;l+UR;lVL;l=THE;l,
UL(R);l=ϵcμmϵmμchl+(qmS)1z[zjl(z)]z|z=qL(R)Sjl(qL(R)S)1z[zhl+(z)]z|z=qmS,
VL(R);l=hl+(qmS)1z[zjl(z)]z|z=qL(R)Sϵcμmϵmμcjl(qL(R)S)1z[zhl+(z)]z|z=qmS,
CL(R);l=ϵcμmϵmμcjl(qL(R)S)1z[zjl(z)]z|z=qmSjl(qmS)1z[zjl(z)]z|z=qL(R)S,
DL(R);l=jl(qL(R)S)1z[zjl(z)]z|z=qmSϵcμmϵmμcjl(qmS)1z[zjl(z)]z|z=qL(R)S.
(d11d12d130d21d220d24d31d320d34d41d42d430)(CHH;lCHE;lCEH;lCEE;lTHH;ltotTHE;ltotTEH;ltotTEE;ltot)=(a100a20a1a20),
σsc=2(qS)2l=1(2l+1)[|TEE;ltot|2+|THH;ltot|2+2|TEH;ltot|2].

Metrics