Abstract

This paper presents two- and three-dimensional (2D and 3D) finite difference time domain modeling and plane wave expansion results for 2D photonic crystal waveguides in GaN-on-sapphire with an AlN lattice matching layer. The low refractive index contrast between GaN and sapphire restricts operation to above the light line, and losses have been calculated to be in the region of 0.10.3dB/μm, depending on hole depth, which in short devices could be acceptable. A slow-light directional coupler is then designed that has an overall length of 5 μm for 50%–50% coupling at 800 nm. Device tuning is then discussed in terms of both thermo-optic and electro-optic effects, and tuning from 50%–50% to 93%–7% coupling is shown for a 0.1% change in refractive index.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
    [CrossRef]
  2. A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
    [CrossRef]
  3. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
    [CrossRef]
  4. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
    [CrossRef]
  5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [CrossRef]
  6. J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
    [CrossRef]
  7. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
    [CrossRef]
  8. E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
    [CrossRef]
  9. G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
    [CrossRef]
  10. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
    [CrossRef]
  11. S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
    [CrossRef]
  12. A. Rosenberg, M. Carter, J. Casey, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005).
    [CrossRef]
  13. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
    [CrossRef]
  14. R. Ahmad, Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
    [CrossRef]
  15. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  16. M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18, 1450–1461 (2010).
    [CrossRef]
  17. J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
    [CrossRef]
  18. B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
    [CrossRef]
  19. Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
    [CrossRef]
  20. Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
    [CrossRef]
  21. C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.
  22. T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
    [CrossRef]
  23. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
    [CrossRef]
  24. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [CrossRef]
  25. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76  dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096(2004).
    [CrossRef]
  26. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
    [CrossRef]
  27. N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.
  28. E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.
  29. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
    [CrossRef]
  30. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  32. A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
    [CrossRef]
  33. L. H. Frandsen, V. A. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  34. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  35. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  36. T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B 26, 768–777 (2009).
    [CrossRef]
  37. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
    [CrossRef]
  38. N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
    [CrossRef]
  39. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
    [CrossRef]
  40. M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
    [CrossRef]
  41. Martin J. Cryan, “On the modeling of losses in short length photonic crystal waveguides,” J. Lightwave Technol. 27, 4841–4847 (2009).
    [CrossRef]
  42. N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
    [CrossRef]
  43. D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
    [CrossRef]
  44. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
    [CrossRef]
  45. X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
    [CrossRef]

2011 (2)

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[CrossRef]

2010 (3)

M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18, 1450–1461 (2010).
[CrossRef]

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009 (5)

N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
[CrossRef]

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B 26, 768–777 (2009).
[CrossRef]

Martin J. Cryan, “On the modeling of losses in short length photonic crystal waveguides,” J. Lightwave Technol. 27, 4841–4847 (2009).
[CrossRef]

2008 (8)

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
[CrossRef]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Ahmad, Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[CrossRef]

2007 (2)

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
[CrossRef]

2006 (3)

2005 (4)

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

A. Rosenberg, M. Carter, J. Casey, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005).
[CrossRef]

2004 (2)

2003 (4)

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef]

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

2002 (1)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

2001 (4)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

2000 (1)

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

1998 (1)

E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

1996 (1)

T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

1995 (1)

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Adawi, A. M.

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

Adibi, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Ahmad, R.

Andreani, L. C.

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[CrossRef]

Asakawa, K.

Barry, L. P.

Beggs, D. M.

Belotti, M.

Benisty, H.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Béraud, A.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bhardwaj, M.

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Borel, P. I.

Brand, S.

T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Brueck, S. R. J.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Bussmann, K.

Calvez, S.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

Cao, T.

Cao, X. A.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Caro, J.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

Carter, M.

Casey, J.

Cassagne, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Chang, C. A.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Chang, S. J.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Cheben, P.

Chen, C. H.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Chen, C.-Y.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Chen, J. F.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Chen, K. J.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Chi, G. C.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Chi, J. Y.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Choi, Y.-S.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Chowdhury, A.

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Comaschi, C.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Coquillat, D.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Craddock, I. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Cryan, M. J.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B 26, 768–777 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Cryan, Martin J.

d’Yerville, M. L. V.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Dawson, J. M.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Dawson, M. D.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

De La Rue, R. M.

Delâge, A.

DenBaars, S. P.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Densmore, A.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Dylewicz, R.

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

Eddy, C.

Engin, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

Fage-Pedersen, J.

Faraon, A.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

Fong, K. Y.

Frandsen, L. H.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Galli, M.

Gao, Y.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Gerace, D.

Gomez-Iglesias, A.

Gu, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

Guizzetti, G.

Haberer, E.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Heard, P. J.

T. Cao, Y.-L. D. Ho, P. J. Heard, L. P. Barry, A. E. Kelly, and M. J. Cryan, “Fabrication and measurement of a photonic crystal waveguide integrated with a semiconductor optical amplifier,” J. Opt. Soc. Am. B 26, 768–777 (2009).
[CrossRef]

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Hennessy, K.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Henry, R.

Hersee, S. D.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Ho, Y.-L. D.

Hock, M. N.

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Holm, R.

Hornak, L. A.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Hu, E. L.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Hueting, N. A.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Hui, R.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ikeda, N.

Inoue, K.

Jafarpour, A.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Janz, S.

Jia, S.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Jiang, H. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Jin, S. X.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Jo, K.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

Johnson, N. P.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

Jouanin, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Judith, E. G.

E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Karouta, F.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

Kelly, A. E.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Kim, D. W.

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

Kim, M.

Kimoto, T.

N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
[CrossRef]

Komori, K.

Korakakis, D.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Kraus, T. F.

T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Krauss, T. F.

Kuball, M.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Labilloy, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Lau, K. M.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Lavrinenko, V. A.

Lee, R. K.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Leggett, G. J.

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

Li, J.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Lidzey, D. G.

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

Lin, C.-H.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Lin, J. Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Lis, S.

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Long, X. C.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Malvezzi, A. M.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

McKnight, L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

McNab, S.

Md Zain, A.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Meier, C.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Moll, N.

Mu, Z.-D.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Myers, R. A.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Myers, T.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Nakamura, S.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Nakamura, Y.

Nguyen, H. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

Nightingale, J. R.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

O’Brien, J.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

O’Brien, J. L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

O’Faolain, L.

Ogawa, T.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Palacios, T.

Park, J. W.

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

Patela, S.

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

Peng, L.-H.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Pernice, W.

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Post, E.

Prather, D.

Ptasinski, K.

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Railton, C. J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Ramer, R.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Rivoire, K.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

Roeling, E. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

Rogge, S.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

Rong, B.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

Rorison, J.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Rosenberg, A.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ryu, K. K.

Salemink, H. W. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

Saura, A.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

Schmid, J. H.

Schuck, C.

Schuller, T.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Shamamian, V.

Sharma, R.

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

Shen, K.-C.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Sheu, J. K.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Shi, S.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Smith, C. J. M.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Sorel, M.

Su, Y. K.

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

Suda, J.

N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
[CrossRef]

Sugimoto, Y.

Sung, Y. J.

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

Taherion, S.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tanaka, Y.

Tang, H. X.

Thompson, M.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Thompson, M. G.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

Timperman, A.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Tizazu, G.

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

Tompkins, R. P.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Torres, J.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

van der Drift, E.

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

van der Drift, E. W. J. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

van der Heijden, R.

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

van der Heijden, R. W.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

Vecchi, G.

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

Vlasov, Y.

Vuckovic, J.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

Waldron, P.

Wan, Y.

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

Wang, D.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Wang, R. N.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Wang, T.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

Watanabe, N.

N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
[CrossRef]

Watson, I. M.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

Weimann, N. G.

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

Weisbuch, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

White, T. P.

Wijnhoven, J.

E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Willem, L.V.

E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

Wong, D. C. L.

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Xiong, C.

Xu, D.-X.

Xu, Y.

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yamamoto, N.

Yang, C. C.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Yang, Z.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Yeh, D.-M.

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

Yeldandi, S.

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

Yeom, G. Y.

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

Zain, A. Md

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

Zain, A. R. Md

Zain, Md

Zhang, B. S.

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

Zheng, K.

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

Appl. Phys. Lett. (12)

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett. 99, 161119 (2011).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93, 051117 (2008).
[CrossRef]

Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88, 041913 (2006).
[CrossRef]

Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, “GaN blue photonic crystal membrane nanocavities,” Appl. Phys. Lett. 87, 243101 (2005).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Béraud, and C. Jouanin, “Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

R. Hui, S. Taherion, Y. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “GaN-based waveguide devices for long-wavelength optical communications,” Appl. Phys. Lett. 82, 1326–1328 (2003).
[CrossRef]

A. Chowdhury, M. N. Hock, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003).
[CrossRef]

D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. L. V. d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005).
[CrossRef]

X. C. Long, R. A. Myers, S. R. J. Brueck, R. Ramer, K. Zheng, and S. D. Hersee, “GaN linear electro-optic effect,” Appl. Phys. Lett. 67, 1349–1351 (1995).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

ECS Trans. (1)

J. M. Dawson, R. P. Tompkins, J. R. Nightingale, S. Yeldandi, K. Jo, X. A. Cao, L. A. Hornak, D. Korakakis, T. Myers, and A. Timperman, “Design and characterization of optofluidic photonic crystal structures for the detection of fluorescent-labeled biomolecules,” ECS Trans. 13, 27–38 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett. 13, 848–850 (2001).
[CrossRef]

M. J. Cryan, D. C. L. Wong, I. J. Craddock, S. Yu, J. Rorison, and C. J. Railton, “Calculation of losses in 2-D photonic crystal membrane waveguides using the 3-D FDTD method,” IEEE Photon. Technol. Lett. 17, 58–60 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

B. Rong, H. W. M. Salemink, E. M. Roeling, R. van der Heijden, F. Karouta, and E. van der Drift, “Fabrication of two dimensional GaN nanophotonic crystals,” J. Vac. Sci. Technol. B 25, 2632–2636 (2007).
[CrossRef]

Langmuir (1)

G. Tizazu, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Photopatterning, etching, and derivatization of self-assembled monolayers of phosphonic acids on the native oxide of titanium,” Langmuir 25, 10746–10753 (2009).
[CrossRef]

Nature (1)

T. F. Kraus, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Opt. Express (11)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Ahmad, Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12084–12089 (2008).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
[CrossRef]

Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76  dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12, 1090–1096(2004).
[CrossRef]

A. Rosenberg, M. Carter, J. Casey, M. Kim, R. Holm, R. Henry, C. Eddy, V. Shamamian, K. Bussmann, S. Shi, and D. Prather, “Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005).
[CrossRef]

N. Yamamoto, T. Ogawa, and K. Komori, “Photonic crystal directional coupler switch with small switching length and wide bandwidth,” Opt. Express 14, 1223–1229 (2006).
[CrossRef]

L. H. Frandsen, V. A. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
[CrossRef]

M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express 18, 1450–1461 (2010).
[CrossRef]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19, 10462–10470 (2011).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

A. Jafarpour, A. Adibi, Y. Xu, and R. K. Lee, “Mode dispersion in biperiodic photonic crystal waveguides,” Phys. Rev. B 68, 233102 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[CrossRef]

Phys. Status Solidi C (1)

N. Watanabe, T. Kimoto, and J. Suda, “Determination of the thermo-optic coefficients of GaN and AlN up to 515 °C,” Phys. Status Solidi C 6, S776–S779 (2009).
[CrossRef]

Proc. SPIE (1)

S. Lis, R. Dylewicz, K. Ptasiński, and S. Patela, “Photonic crystal microcavity in GaN-on-sapphire slab waveguide for sensor applications,” Proc. SPIE 7713, 77131N (2010).
[CrossRef]

Science (2)

E. G. Judith, J. Wijnhoven, and L.V. Willem, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Thin Solid Films (1)

D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films 398–399, 87–92 (2001).
[CrossRef]

Other (3)

C.-H. Lin, K.-C. Shen, D.-M. Yeh, C.-Y. Chen, Z.-D. Mu, L.-H. Peng, and C. C. Yang, “GaN Defect photonic crystal membrane laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThJ1.

N. A. Hueting, E. Engin, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the International Conference on Nitride SemiConductors, Glasgow, July10–152011.

E. Engin, N. A. Hueting, A. Md Zain, T. Schuller, A. Saura, P. J. Heard, T. Wang, M. Thompson, M. Kuball, J. O’Brien, and M. J. Cryan, “Analysis of losses in GaN slab waveguides for integrated photonics applications,” presented at the Semiconductor Integrated OptoElectronics Conference, Cardiff, April 18–202011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Layer structure to be modeled. The refractive index values are for a wavelength of 800 nm.

Fig. 2.
Fig. 2.

(a) Band diagram of the 2D triangular lattice of holes in dielectric (n=2.2787) with r/a=0.32. (b) Transmission response plotted obtained from a 2D FDTD simulation. The parameters of the PhC are r/a=0.32 and n=2.2787.

Fig. 3.
Fig. 3.

Simulation environment. The crystal is placed in the ΓK direction in front of a Gaussian pulse source. The flux is measured on the other side of the crystal and normalized to the case where there are no holes.

Fig. 4.
Fig. 4.

(a) Geometry of W1 defect PhC structure. (b) Band diagram for 2D W1 defect PhC. (c) Real part of Hz at the normalized wave vector k=0.5 for the dashed curve. The solid line in (b) corresponds to the hole radii [r0,r1,r2]=[0.32a,0.32a,0.32a], the dashed line is for [0.32a, 0.34a, 0.32a], and the circled line is for [0.32a, 0.34a, 0.38a]. The air light line is also shown.

Fig. 5.
Fig. 5.

Classification of the coupler modes according to their symmetry. These are plots of the Hz field of the modes of a typical triangular lattice of air holes.

Fig. 6.
Fig. 6.

(a) Even–even and even–odd bands of two different coupler geometries. Solid curves are for [r0,r1,r2]=[0.32a,0.34a,0.32a], and circled curves are for [r0,r1,r2]=[0.32a,0.34a,0.38a]. The refractive index of the background is 2.2787. (b) 3 dB coupling length versus normalized frequency. The 3 dB coupling length is given in terms of a and is the distance where the phase difference between the even–even and even–odd modes is π/2; that is, the input power in one of the waveguides is split equally between the two waveguides.

Fig. 7.
Fig. 7.

(a) Simulation domain for the ΓK oriented PhC. (b) Dimensions and orientation of the excitation and the flux plane in the y plane.

Fig. 8.
Fig. 8.

(a) Band diagram of the 2D triangular lattice of holes in dielectric (n=2.2787) with r/a=0.32. (b) Transmission response for ΓM and ΓK crystal directions calculated by 3D FDTD. The simulation is made using the layer structure in Fig. 1 for a=271nm, r/a=0.32 and for infinite depth holes.

Fig. 9.
Fig. 9.

Plots of transmission through a ΓM oriented PhC for three different depths of holes. The solid curve is when the hole depth is infinite, the dashed curve is when holes stop in the sapphire layer, and the dotted curve is when the holes are only in the GaN layer. The PhC with holes going through GaN and AlN layer but stopping in sapphire layer shows a similar performance to infinite depth holes.

Fig. 10.
Fig. 10.

W1 defect PhC geometry to compute the propagation loss. The first row of holes surrounding the defect has a radius of r1, and the second row has a radius of r2. The excitation is placed at the beginning of the waveguide, and flux planes are put through the defect separated by a lattice constant.

Fig. 11.
Fig. 11.

Fluxes at 799.3 nm along a W1 defect PhC for PhCs with different parameters: circles, [r0,r1,r2]=[0.32a,0.34a,0.38a] and squares, [r0,r1,r2]=[0.32a,0.34a,0.32a]. The losses computed by linear fitting are 0.12dB/μm and 0.2dB/μm, respectively, for an infinite depth of holes. Reducing the hole depth to the AlN-sapphire interface increases the loss per micrometer by a factor of 2.

Fig. 12.
Fig. 12.

(a) Top view of the simulated 3D structure where the hole sizes are r0=0.32a, r1=0.34a, r2=0.32a, and they are infinitely deep. (b) Flux at 799.3 nm along the waveguides, the solid curve showing the bar port (where the excitation is), and the dashed curve is the cross port. The coupling is very small; therefore, the coupling length is large.

Fig. 13.
Fig. 13.

(a) Top view of the simulated 3D structure where the hole sizes are r0=0.32a, r1=0.34a, r2=0.38a, and they are infinitely deep. (b) The fluxes in the cross and bar ports at 799.3 nm. In this geometry, at eight lattice cells from the source the input power is split equally between the waveguides.

Fig. 14.
Fig. 14.

(a) Top view of the simulated 3D structure where two structures shown above are combined. The hole sizes of the first and last five lattice constants are r0=0.32a, r1=0.34a, r2=0.32a, and the eight lattice constant long coupling region has parameters of r0=0.32a, r1=0.34a, r2=0.38a. The holes are infinitely deep. (b) Flux planes along the two arms of the coupler for three different wavelengths.

Fig. 15.
Fig. 15.

Flux at each arm of the coupler of Fig. 14(a) and the summation of these at 12 lattice constants away from the source.

Fig. 16.
Fig. 16.

Effect of different depth of holes on the behavior of the coupler. The solid curves show the flux in the cross and bar ports in the case when the holes are infinitely deep, and the circled curves are when the holes pass through GaN and AlN layer but stop at the sapphire layer.

Fig. 17.
Fig. 17.

The coupler geometry used in tuning simulation is similar to the one in Fig. 14(a), but it has an extended strong coupling region of 11 lattice constants long to enhance the tuning range.

Fig. 18.
Fig. 18.

Normalized fluxes, at 5.4 µm away from the source, in the cross port of the coupler structure shown in Fig. 17 with respect to the wavelength for the original refractive index value for GaN (no-circles) and the case when the refractive index is changed by 0.1% (circles).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L3dB=Lπ/2=π2|Δk|,
nx=ny=n=n0n03r31E2,
n02.3535,r31=0.57±0.11pm/V.
Δn=4.4125×1012Vd.

Metrics