Abstract

We theoretically investigate the optical response of a hybrid nanocrystal complex composed of a semiconductor quantum dot (SQD) and a metal nanoparticle (MNP) in the presence of laser fields within a full quantum description. The analytic results demonstrate that the modified decay rate of the exciton is related to the exciton energy and the distance between SQD and MNP in terms of a quantum transformation method. The responses of the coupled system to a weak laser field and a strong laser field are demonstrated. When the two laser fields are presented simultaneously, the energy absorption rate of the coupled system to the weak laser field can be controlled by the strong laser field and the distance between SQD and MNP. This tunable optical response in such a hybrid system can be exploited for the development of the optical processing devices such as ultrafast optical switch in the future.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
    [CrossRef]
  2. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef]
  3. A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
    [CrossRef]
  4. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
    [CrossRef]
  5. M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
    [CrossRef]
  6. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
    [CrossRef]
  7. A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
    [CrossRef]
  8. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [CrossRef]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef]
  10. U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008).
    [CrossRef]
  11. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
    [CrossRef]
  12. B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
    [CrossRef]
  13. A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [CrossRef]
  14. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003).
    [CrossRef]
  15. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
    [CrossRef]
  16. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
    [CrossRef]
  17. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011).
    [CrossRef]
  18. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008).
    [CrossRef]
  19. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
    [CrossRef]
  20. R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  22. F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
    [CrossRef]
  23. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
    [CrossRef]
  24. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004).
    [CrossRef]
  25. D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008).
    [CrossRef]
  26. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  27. Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
    [CrossRef]

2011 (6)

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011).
[CrossRef]

2010 (3)

F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

2009 (1)

Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

2008 (4)

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008).
[CrossRef]

D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008).
[CrossRef]

2007 (2)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

2006 (2)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

2005 (1)

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

2004 (3)

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004).
[CrossRef]

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003).
[CrossRef]

2002 (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Abajo, F. J. G.

A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Adams, D. C.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Andersen, M. L.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Arias-Gonzalez, J.

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

Atay, T.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Carminati, R.

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Chang, D. E.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Chow, W. W.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Davids, P.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

De Abajo, F. J. G.

F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[CrossRef]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Dulka, J.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Fomenko, V.

D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008).
[CrossRef]

Garcia-Vidal, F. J.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Gonzalez-Tudela, A.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011).
[CrossRef]

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

Greffet, J. J.

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Gueroui, Z.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004).
[CrossRef]

Hohenester, U.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008).
[CrossRef]

U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008).
[CrossRef]

Jones, P. H.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

lati, M. A.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

Libchaber, A.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004).
[CrossRef]

Lodahl, P.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

Lu, Z.

Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Lyon, S.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Manjavacas, A.

A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Maragò, O. M.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

Martin-Cano, D.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Martin-Moreno, L.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Moreno, E.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Nesbitt, D. J.

D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008).
[CrossRef]

Nordlander, P.

A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

Nurmikko, A. V.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

Passmore, B. S.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Ribaudo, T.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Richardson, H. H.

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[CrossRef]

Ridolfo, A.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Saija, R.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Savasta, S.

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Shaner, E. A.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Shi, S.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Song, J. H.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

Sørensen, A. S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

Stobbe, S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003).
[CrossRef]

Tejedor, C.

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

Thomas, M.

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

Trügler, A.

U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008).
[CrossRef]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008).
[CrossRef]

Urabe, H.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

Wasserman, D.

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

Zhang, W.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Zhu, K. D.

Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

ACS Nano (1)

A. Ridolfo, R. Saija, S. Savasta, P. H. Jones, M. A. lati, and O. M. Maragò, “Fano-Doppler laser cooling of hybrid nanostructures,” ACS Nano 5, 7354–7361 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

M. Thomas, J. J. Greffet, R. Carminati, and J. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Hohenester and A. Trügler, “Interaction of single molecules with metallic nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 14, 1430–1440 (2008).
[CrossRef]

J. Phys. B (1)

Z. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Nano Lett. (7)

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

D. J. Nesbitt and V. Fomenko, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8, 287–293 (2008).
[CrossRef]

B. S. Passmore, D. C. Adams, T. Ribaudo, D. Wasserman, S. Lyon, P. Davids, W. W. Chow, and E. A. Shaner, “Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots,” Nano Lett. 11, 338–342 (2011).
[CrossRef]

A. Manjavacas, F. J. G. Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[CrossRef]

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557–1561 (2005).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4, 2323–2330 (2004).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

Nano Today (1)

A. O. Govorov and H. H. Richardson, “Generating heat with metal nanoparticles,” Nano Today 2, 30–38 (2007).
[CrossRef]

Nat. Phys. (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007).
[CrossRef]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[CrossRef]

Phys. Rev. B (2)

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405(2011).
[CrossRef]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B 77, 115403 (2008).
[CrossRef]

Phys. Rev. Lett. (6)

A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, and F. J. Garcia-Vidal, “Entanglement of two qubits mediated by one-dimensional plasmonic waveguides,” Phys. Rev. Lett. 106, 020501 (2011).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 27402 (2003).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93, 166108 (2004).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. G. De Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Other (3)

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the hybrid SQD-MNP system. (b) The energy level diagram.

Fig. 2.
Fig. 2.

(a) The energy shift, (b) the modified decay rate as a function of the distance for ωex=2.5,3eV.

Fig. 3.
Fig. 3.

The energy absorption rate (Qtot,QM,QS) as a function of the laser energy. (a) For a weak laser (the laser intensity is 1w/cm2). Inset shows a population difference in the weak field regime. (b) For a strong laser (the laser intensity is 1000w/cm2). Inset shows a population difference in the strong field regime.

Fig. 4.
Fig. 4.

The energy absorption rate of the SQD (QSw(δ)) and the MNP (QMw(δ)) to the weak laser field. Inset: quantum transitions of SQD subsystem corresponding to the three absorption peaks.

Fig. 5.
Fig. 5.

The energy absorption rate of the SQD under the both quantum and semiclassical descriptions for different distances d=30,50,100nm.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

HSQD=ωexσz,
HP=kωkak+ak,
Hint=k(gkakσ++h.c.),
HD=k(μσ++μk*ak+)Eseiωst+h.c.,
H=(ωexω)σz+k(ωkω)ak+akk[gkakσ++(μσ++μk*ak+)E0+h.c.].
tρ=i[H,ρ]+ςS+ςP,
it[kπk(ω)ak]=ikgkakkπk(ω)(gk*σ+μk*E0),
itσ=(ωexωiκ/2)σ+2σz(kgkak+μE0),
itσz=iκ(σz+1/2)[σ+(kgkak+μE0)c.c.],
kgkak=ikπk(ω)(gk*σ+μk*E0).
ikπk(ω)(gk*σ+μk*E0)=μ2sα2γR3σεeff1εeff2d6+μsαγ1R3E0εeff1d3.
gkμsαεeff2d3μk,k|μk|2(ωkω)iγk/2ε0γR3.
tρ˜=i[eisHeis,ρ˜]+eisςSeis+eisςpeis.
tρS=i[HS,ρS]+ζS,
HS=(ωex0ω)σz(μ0E0σ++h.c.),
ζS=(κ0/2)×(2σρσ+ρσ+σσ+σρ),
tρ22=iμ0E0ρ21iμ0*E0*ρ21*κ0ρ22,
tρ21=i(ωex0ω)ρ21+iμ0*E0*(2ρ221)κ0ρ21/2,
ρ22=2Im[μ0*E0*ρ21*]κ0,
ρ21=μ0*E0*(12ρ22)(ωex0ω)+iκ0/2.
ρ22=|μ0E0|2(ωex0ω)2+κ02/4.
ρ22=|μ0E0|2(ωex0ω)2+κ02/4+2|μ0E0|2.
QM(Δ)=Q|Δ+FR|2+FI2Δ2+1,QS(Δ)=M2|E0|2ωexκ2(Δ2+1),
Q=ω|E0|2R3Im[εM(ω)]6|εeff1|2.
tp=[i(ωωex0)κ0/2]piμμ0E0w,
tw=κ0(w+1)+4Im[μ0*E0*p]/μ,
0=[i(ωωex0)κ0/2]p0iμμ0Esw0,
iδp+=[i(ωωex0)κ0/2]p+iμμ0(Esw++Eww0),
iδp=[i(ωωex0)κ0/2]piμμ0Esw,
0=κ0μ(w0+1)+i2(μ0Esp0*μ0*Es*p0),
iδμw=κ0μw+i2(μ0Esp+*μ0*Es*pμ0Ewp0*).
p+=μ0μEwH(δ)w0D(δ),
D(δ)=4|μ0Es|2(δ+iκ0/2)+(δ+iκ0)[(ωωex0)δiκ0/2][(ωωex0)+δ+iκ0/2],
H(δ)=(δ+iκ0)[(ωωex0)δiκ0/2]+2|μ0Es|2δ(ωωex0)iκ0/2,
w0=(ωωex0)2+κ02/4(ωωex0)2+κ02/4+2|μ0Es|2.
K=|μ0Ew|2w0D(δ)κ0*{(δ+iκ0)[(ωsωex0)δiκ0/2]+2|μ0Es|2δ[(ωsωex0)iκ0/2]}.
QMw(δ)=(ωs+δ)|Ew|2R3Im[εM(ωs+δ)]6|εeff1|2×|ωex0ωsδ+θμR|2+[θμIκ0/2]2+2|μ0Ew|2[ωex0ωsδ]2+κ02/4+2|μ0Ew|2.

Metrics