Abstract

Core guidance within several bands in the visible region of the spectrum is observed and characterized in hollow-core photonic crystal fibers designed to operate at a wavelength of 1550 nm. Experiments show that in these transmission bands, light is likely to be confined to the core due both to antiresonance in the silica ring around the core and to low coupling to microstructured cladding modes. The bands present losses of 1dB/cm and are highly dependent on the exact fiber structure and light polarization. Even small physical changes due to pressure are found to affect the transmission intensity and polarization. The response to pressure was then investigated, focusing on the development of sensors based on intensity or polarization interrogation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News 18(7), 26–31 (2007).
    [CrossRef]
  2. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  3. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
    [CrossRef]
  4. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
    [CrossRef]
  5. H. K. Gahir and D. Khanna, “Design and development of a temperature-compesated fiber optic polarimetric pressure sensor based on photonic crystal fiber at 1550 nm,” Appl. Opt. 46, 1184–1189 (2007).
    [CrossRef]
  6. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
    [CrossRef]
  7. T. T Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, Jun Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261–2264 (2006).
    [CrossRef]
  8. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef]
  9. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [CrossRef]
  10. X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
    [CrossRef]
  11. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009).
    [CrossRef]
  12. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [CrossRef]
  13. R. E. P. de Oliveira, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, “Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,” J. Lightwave Technol. 27, 1605–1609 (2009).
    [CrossRef]
  14. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
    [CrossRef]
  15. F. Gérôme, R. Jamier, J-L. Auguste, G. Humbert, and J-C. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
    [CrossRef]
  16. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russel, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
    [CrossRef]
  17. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [CrossRef]
  18. A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
    [CrossRef]
  19. V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
    [CrossRef]
  20. B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
    [CrossRef]
  21. Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
    [CrossRef]
  22. Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
    [CrossRef]
  23. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004).
    [CrossRef]
  24. M. Wegmuller, M. Legre, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, “Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,” Opt. Express 13, 1457–1467 (2005).
    [CrossRef]
  25. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13, 9115–9124 (2005).
    [CrossRef]
  26. M. S. Alam, K. Saitoh, and M. Koshiba, “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30, 824–826 (2005).
    [CrossRef]

2010 (2)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

F. Gérôme, R. Jamier, J-L. Auguste, G. Humbert, and J-C. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35, 1157–1159 (2010).
[CrossRef]

2009 (3)

2008 (1)

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

2007 (4)

2006 (4)

P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

T. T Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, Jun Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261–2264 (2006).
[CrossRef]

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

2005 (6)

2004 (5)

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Alam, M. S.

Alkeskjold, T. T

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Arregui, F. J.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Auguste, J-L.

Balogh, D. T.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Benabid, F.

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Berghmans, F.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Bird, D.

Bird, D. M.

Birks, T.

Birks, T. A.

Bjarklev, A.

Blondy, J-C.

Bock, W. J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Bouwmans, G.

Bozolan, A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

Bravo, J.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

Burger, S.

Carberry, J. P.

Chen, J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Chen, X.

Constantino, C. J. L.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Cordeiro, C. M. B.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

R. E. P. de Oliveira, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, “Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,” J. Lightwave Technol. 27, 1605–1609 (2009).
[CrossRef]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Crowley, A. M.

Davis, F.

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

de Matos, C. J. S.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

R. E. P. de Oliveira, C. J. S. de Matos, J. G. Hayashi, and C. M. B. Cordeiro, “Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,” J. Lightwave Technol. 27, 1605–1609 (2009).
[CrossRef]

de Oliveira, R. E. P.

Eftimov, T.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

Evans-Freeman, J.

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Farr, L.

Gahir, H. K.

Gallagher, M. T.

Gauza, S.

George, A. K.

Gérôme, F.

Gerosa, R. M.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

Gisin, N.

Goicoechea, J.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Golojuch, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Hansen, T. P.

Hassan, A.

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Hayashi, J. G.

Hedley, T.

Hedley, T. D.

Hermann, D. S.

Hernáez, M.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Higson, S. P. J.

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Humbert, G.

Jakobsen, C.

Jamier, R.

Kaneko, F.

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

Kato, K.

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

Khanna, D.

Knight, J.

Knight, J. C.

Koch, K. W.

Koshiba, M.

Lægsgaard, J.

Larrión, B.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Legre, M.

Li, Jun

Li, M.

Light, P. S.

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Luan, F.

Makara, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Mangan, B.

Mangan, B. J.

Martynkien, T.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Mason, M. W.

Matías, I. R.

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Mendonça, C. R.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Mergo, P.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Monro, T. M.

Nabok, A.

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Nasilowski, T.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Noguchi, K.

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

Ohdaira, Y.

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

Oliveira, O. N.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Olszewski, J.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Pearce, G. J.

Poletti, F.

Pottage, J.

Poulton, C. G.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Richardson, D. J.

Roberts, P.

Roberts, P. J.

Romero, M. A.

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

Russel, P. St. J.

Russell, P.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Santos, F. R.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Shinbo, K.

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

Statkiewicz, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Strack, P. J.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Suryajaya,

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Szpulak, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Thienpont, H.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Tomlinson, A.

Urbanczyk, W.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Venkataraman, N.

Wadworth, W. J.

Wang, Y. Y.

Wegmuller, M.

Wheeler, N. V.

Wiederhecker, G. S.

Williams, D.

Williams, D. P.

Wojcik, J.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Wood, W. A.

Wu, S.-T.

Zenteno, L. A.

Zucolotto, V.

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

Suryajaya, A. Nabok, F. Davis, A. Hassan, S. P. J. Higson, and J. Evans-Freeman, “Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles,” Appl. Surf. Sci. 254, 4891–4898 (2008).
[CrossRef]

Colloids Surf. A: Physiochem. Eng. Aspects (1)

Y. Ohdaira, K. Noguchi, K. Shinbo, K. Kato, and F. Kaneko, “Nano-fabrication of surface relief gratings on azo dye films utilizing interference of evanescent waves on prism,” Colloids Surf. A: Physiochem. Eng. Aspects 284, 556–560 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55, 1119–1123 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Sensors (1)

B. Larrión, M. Hernáez, F. J. Arregui, J. Goicoechea, J. Bravo, and I. R. Matías, “Photonic crystal fiber temperature sensor based on quantum dot nanocoatings,” J. Sensors 2009, 932471 (2009).
[CrossRef]

Opt. Express (9)

T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibres,” Opt. Express 12, 69–74 (2004).
[CrossRef]

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12, 1477–1484 (2004).
[CrossRef]

X. Chen, M. Li, N. Venkataraman, M. T. Gallagher, W. A. Wood, A. M. Crowley, J. P. Carberry, L. A. Zenteno, and K. W. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12, 3888–3893 (2004).
[CrossRef]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russel, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[CrossRef]

M. Wegmuller, M. Legre, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, “Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm,” Opt. Express 13, 1457–1467 (2005).
[CrossRef]

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13, 8277–8285 (2005).
[CrossRef]

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro, “The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers,” Opt. Express 13, 9115–9124 (2005).
[CrossRef]

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17, 16238–16243 (2009).
[CrossRef]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russel, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15, 12680–12685 (2007).
[CrossRef]

Opt. Lett. (3)

Opt. Photon. News (1)

P. Russell, “Photonic crystal fiber: finding the holey grail,” Opt. Photon. News 18(7), 26–31 (2007).
[CrossRef]

Proc. SPIE (1)

A. Bozolan, R. M. Gerosa, C. J. S. de Matos, M. A. Romero, and C. M. B. Cordeiro, “Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications,” Proc. SPIE 7839, 78390A (2010).
[CrossRef]

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[CrossRef]

Thin Solid Films (1)

V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonça, and O. N. Oliveira, “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110–113 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron micrograph of the central part of the cross section of the HC-PCF used in the experiments.

Fig. 2.
Fig. 2.

Normalized near-IR transmission spectrum of an 10m length HC-1550-02 fiber.

Fig. 3.
Fig. 3.

Normalized visible transmission spectra for a 20 cm length of (a) sample I and (b) sample II for two orthogonal linear polarizations (X and Y).

Fig. 4.
Fig. 4.

Schemes of the modifications to the HC-PCF structure made to reveal the guidance mechanisms: (a) all cladding holes, except for those in the first ring around the core, are filled with an index matching oil; (b) a 24 or 32 nm thick film is deposited onto the inner walls of the silica-web ring around the core.

Fig. 5.
Fig. 5.

Transmission spectra for 12 cm lengths of sample II with and without a four bilayer polymer film. Band spectral shifts are identified by the arrows.

Fig. 6.
Fig. 6.

(a) Calculated attenuation coefficient spectra and (b) normalized transmission spectra for a 20 cm long structure composed of uniform 225 nm, 250 nm, and 275 nm thick circular rings around a hollow core.

Fig. 7.
Fig. 7.

Experimental setup for polarization analysis as a function of internally applied pressure. In the drawing, the orientation of the polarization axes relative to the fiber structure is arbitrary and merely illustrates the measuring procedure.

Fig. 8.
Fig. 8.

Gauge-pressure-dependent intensity profile along polarization axes 1 and 2 when the input polarization is aligned with axis 1 in fiber sample II.

Fig. 9.
Fig. 9.

Output power as a function of gauge pressure for each polarization axis and without the output polarizing cube. Light is launched (a) into axis 1 and (b) into axis 2.

Tables (1)

Tables Icon

Table 1. Rotation of Axis 1 and Change in Output Polarization Elipticity with Gauge Pressure

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=4tfilmnfilm212j+1,

Metrics