Abstract

A four-layer waveguide structure comprising a dielectric substrate, a metal layer, a left-handed material (LHM) as a guiding layer, and a cladding is investigated as a metal-clad waveguide sensor. Fresnel reflection coefficients are used to study the resonance dips at which the reflectance minimizes. Our calculations show that the proposed structure has a preference over the surface-plasmon resonance structure since it gives a much sharper reflectance dip and can achieve considerable sensitivity improvement. The effects of the LHM permittivity, permeability, and thickness on the reflectance curves is studied.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
    [CrossRef]
  2. N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005).
    [CrossRef]
  3. G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001).
    [CrossRef]
  4. Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
    [CrossRef]
  5. M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005).
    [CrossRef]
  6. S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
    [CrossRef]
  7. S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
    [CrossRef]
  8. S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
    [CrossRef]
  9. S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).
  10. T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).
  11. S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011).
    [CrossRef]
  12. V. Veselago, “The electrodynamics of subctance with simultaneously negative index values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [CrossRef]
  13. K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005).
    [CrossRef]
  14. A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
    [CrossRef]
  15. W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).
  16. D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef]
  17. P. Markoš and C. Soukoulis, “Wave propagation,” in From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University, 2008).
  18. V. Podolskiyand and E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005).
    [CrossRef]
  19. P. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
    [CrossRef]
  20. A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
    [CrossRef]
  21. A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

2011 (3)

S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).

T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).

S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011).
[CrossRef]

2010 (1)

S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
[CrossRef]

2009 (1)

S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
[CrossRef]

2008 (1)

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

2006 (1)

D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

2005 (6)

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005).
[CrossRef]

V. Podolskiyand and E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005).
[CrossRef]

K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22, 1016–1023 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005).
[CrossRef]

2004 (1)

A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

2003 (1)

Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
[CrossRef]

2001 (1)

G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

1977 (1)

P. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

1971 (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

1968 (1)

V. Veselago, “The electrodynamics of subctance with simultaneously negative index values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Cai, W.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

El-Agez, T.

S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).

T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).

S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011).
[CrossRef]

Eleftheriadesm, G.

A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Fu, C.

Genov, D.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Goddard, N.

M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005).
[CrossRef]

Grbic, A.

A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005).
[CrossRef]

Ishihara, T.

A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

Jäger, D.

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

Justice, B.

D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Khalil, H.

S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
[CrossRef]

S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
[CrossRef]

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

Lee, B.

Lindblom, G.

Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
[CrossRef]

Markoš, P.

P. Markoš and C. Soukoulis, “Wave propagation,” in From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University, 2008).

Mock, J.

D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Narimanov, E.

Otto, A.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

Park, K.

Pedersen, H.

N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Podolskiyand, V.

Salamon, Z.

Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
[CrossRef]

G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Schurig, D.

D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Shabat, M.

S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
[CrossRef]

S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
[CrossRef]

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

Shalaev, V.

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Skivesen, N.

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. Pedersen, “Peak-type and dip-type metal-clad waveguide sensing,” Opt. Lett. 30, 1659–1661 (2005).
[CrossRef]

Sohler, W.

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

Soukoulis, C.

P. Markoš and C. Soukoulis, “Wave propagation,” in From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University, 2008).

Taya, S.

S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).

T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).

S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011).
[CrossRef]

S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
[CrossRef]

S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
[CrossRef]

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

Tien, P.

P. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

Tollin, G.

Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
[CrossRef]

G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Veselago, V.

V. Veselago, “The electrodynamics of subctance with simultaneously negative index values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Vioktalamo, A. S.

A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

Watanabe, R.

A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

Zhang, Z.

Zourob, M.

M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005).
[CrossRef]

Biophys. J. (2)

G. Tollin and Z. Salamon, “Optical anisotropy in lipid bilayer membranes: coupled plasmon waveguide resonance measurements of molecular orientation, polarizability and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Z. Salamon, G. Lindblom, and G. Tollin, “Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes,” Biophys. J. 84, 1796–1807 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

M. Zourob and N. Goddard, “Metal clad leaky waveguides for chemical and biosensing applications,” Biosens. Bioelectron. 20, 1718–1727 (2005).
[CrossRef]

J. Opt. (1)

S. Taya and T. El-Agez, “Reverse symmetry optical waveguide sensor using plasma substrate,” J. Opt. 13, 075701(2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Appl. (1)

T. El-Agez and S. Taya, “Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors,” Opt. Appl. 41, 89–95 (2011).

Opt. Commun. (1)

A. Otto and W. Sohler, “Modification of the total reflection modes in a dielectric film by one metal boundary,” Opt. Commun. 3, 254–258 (1971).
[CrossRef]

Opt. Lett. (2)

Optik (2)

S. Taya, M. Shabat, and H. Khalil, “Enhancement of Sensitivity in optical sensors using left-handed materials,” Optik 120, 504–508 (2009).
[CrossRef]

S. Taya, M. Shabat, and H. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik 121, 860–865 (2010).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

A. S. Vioktalamo, R. Watanabe, and T. Ishihara, “Permeability enhancement of stratified metal dielectric metamaterial in optical regime,” Photon. Nanostr. Fundam. Appl., doi:10.1016/j.photonics.2011.08.005 (to be published).

Phys. Rev. B (1)

W. Cai, D. Genov, and V. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Phys. Rev. Lett. (1)

A. Grbic and G. Eleftheriadesm, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

P. Tien, “Integrated optics and new wave phenomena in optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

Science (1)

D. Schurig, J. Mock, and B. Justice, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef]

Sens. Actuators A (1)

S. Taya, M. Shabat, H. Khalil, and D. Jäger, “Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors,” Sens. Actuators A 147, 137–141 (2008).
[CrossRef]

Sens. Actuators B (1)

N. Skivesen, R. Horvath, and H. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B 106, 668–676 (2005).
[CrossRef]

Sov. Phys. Usp. (1)

V. Veselago, “The electrodynamics of subctance with simultaneously negative index values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968).
[CrossRef]

Turk. J. Phys. (1)

S. Taya and T. El-Agez, “Comparing optical sensing using slab waveguides and total internal reflection ellipsometry,” Turk. J. Phys. 35, 31–36 (2011).

Other (1)

P. Markoš and C. Soukoulis, “Wave propagation,” in From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics