Abstract

Propagating plasmon modes guided along silver metal nanoridges with triangular and inverted triangular cross sections are investigated in this paper. Mode field profiles, dispersion curves, propagation distances, and figure-of-merits of the plasmon modes are calculated for silver nanoridges with various triangular and inverted triangular waveguide cross sections. It is found that the triangular cross-section nanoridge waveguide, if designed properly, can have longer propagation distance and higher figure-of-merit than the flat-top nanoridge waveguide of the same width. When the triangle height of the nanoridge is high, the mode approaches the small angle wedge mode. An inverted triangular cross-section nanoridge mode can be considered as a hybrid mode of two metal wedge plasmon modes. When inverted triangle depth increases, the propagation distance and the figure-of-merit decrease dramatically, suggesting poorer performance when compared to the flat-top nanoridge plasmon waveguide.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons On Smooth and Rough Surfaces and On Gratings (Springer-Verlag, 1988).
  2. E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  6. A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
    [CrossRef]
  7. G. I. Stegeman, J. J. Burke, and D. G. Hall, “Surface-polaritonlike waves guided by thin, lossy metal films,” Opt. Lett. 8, 383–385 (1983).
    [CrossRef]
  8. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  9. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–846 (2000).
    [CrossRef]
  10. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  11. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
    [CrossRef]
  12. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
    [CrossRef]
  13. A. Degiron, and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
    [CrossRef]
  14. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
    [CrossRef]
  15. P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105–053108 (2007).
    [CrossRef]
  16. S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329 (2004).
    [CrossRef]
  17. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [CrossRef]
  18. J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
    [CrossRef]
  19. I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  20. D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
    [CrossRef]
  21. D. F. P. Pile, and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
    [CrossRef]
  22. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef]
  23. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
    [CrossRef]
  24. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
    [CrossRef]
  25. E. Feigenbaum, and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007).
    [CrossRef]
  26. M. Yan, and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [CrossRef]
  27. Y. Satuby, and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches—measurement and analysis,” Opt. Express 15, 4247–4252 (2007).
    [CrossRef]
  28. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef]
  29. G. Veronis, and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [CrossRef]
  30. L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
    [CrossRef]
  31. J. Guo, and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
    [CrossRef]
  32. J. Chen, G. A. Smolyakov, S. R. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
    [CrossRef]
  33. J. Guo, and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
    [CrossRef]
  34. R. Adato, and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
    [CrossRef]
  35. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987).
    [CrossRef]
  36. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 7279–7290 (2006).
    [CrossRef]
  37. R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
    [CrossRef]
  38. R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G (2007).
    [CrossRef]
  39. Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
    [CrossRef]
  40. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  41. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  42. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [CrossRef]
  43. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  44. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
    [CrossRef]
  45. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
    [CrossRef]
  46. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
    [CrossRef]
  47. A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
    [CrossRef]
  48. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
    [CrossRef]
  49. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  50. E. Feigenbaum and M. Orenstein, “Nano plasmon polariton modes of a wedge cross section metal waveguide,” Opt. Express 14, 8779–8784 (2006).
    [CrossRef]
  51. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef]
  52. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
    [CrossRef]
  53. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Mode properties of flat-top silver nanoridge surface plasmon waveguides,” J. Opt. Soc. Am. B 29, 340–345 (2012).
    [CrossRef]
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  55. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
    [CrossRef]
  56. J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27, 730–734 (2010).
    [CrossRef]
  57. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  58. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [CrossRef]
  59. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
    [CrossRef]

2012 (1)

2010 (2)

2009 (2)

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009).
[CrossRef]

R. Adato, and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
[CrossRef]

2008 (7)

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

J. Guo, and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

J. Chen, G. A. Smolyakov, S. R. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
[CrossRef]

2007 (10)

Y. Satuby, and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches—measurement and analysis,” Opt. Express 15, 4247–4252 (2007).
[CrossRef]

R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef]

M. Yan, and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[CrossRef]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef]

G. Veronis, and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

E. Feigenbaum, and M. Orenstein, “Modeling of complementary (void) plasmon waveguiding,” J. Lightwave Technol. 25, 2547–2562 (2007).
[CrossRef]

R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G (2007).
[CrossRef]

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105–053108 (2007).
[CrossRef]

2006 (8)

2005 (5)

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef]

2004 (4)

D. F. P. Pile, and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329 (2004).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

2002 (1)

I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

2001 (1)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

2000 (3)

1999 (1)

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1990 (1)

J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

1987 (1)

1986 (1)

L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

1983 (2)

1981 (2)

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

1960 (1)

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960).
[CrossRef]

Adato, R.

R. Adato, and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
[CrossRef]

J. Guo, and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef]

R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G (2007).
[CrossRef]

J. Guo, and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef]

Aers, G. C.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Al-Bader, S. J.

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329 (2004).
[CrossRef]

Atwater, H. A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Berini, P.

Berolo, E.

Boardman, A. D.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Boreman, G. D.

Bozhevolnyi, S. I.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Brongersma, M. L.

Brueck, S. R.

Buchwald, W.

Buchwald, W. R.

Buckley, R.

Burke, J. J.

Catrysse, P. B.

Chandran, A.

Charbonneau, R.

Chen, J.

Chen, Z.

Cheng, W.

Chichkov, B. N.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cleary, J. W.

Craig, A. E.

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
[CrossRef]

de Abajo, F. J. G.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

de Waele, R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Degiron, A.

Dereux, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Drehman, A.

Drezet, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Eleftheriades, G. V.

Evlyukhin, A. B.

Fan, S.

Feigenbaum, E.

Felidj, N.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Ferrell, R. A.

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960).
[CrossRef]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Garcia-Vidal, F. J.

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

D. F. P. Pile, and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef]

Guo, J.

Hall, D. G.

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Haupt, R.

L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

He, S.

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Holmgaard, T.

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
[CrossRef]

Ishigami, M.

Islam, R.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kou, F. Y.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Lezec, H. J.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Lisicka-Shrzek, E.

Liu, L.

Lu, J. Q.

J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Malloy, K. J.

Maradudin, A. A.

I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Markey, L.

Martin-Moreno, L.

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[CrossRef]

Novikov, I. V.

I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Olson, G. A.

Orenstein, M.

Pan, Z.

Peale, R. E.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

D. F. P. Pile, and D. K. Gramotnev, “Channel plasmon-polariton in atriangular groove on a metal surface,” Opt. Lett. 29, 1069–1071 (2004).
[CrossRef]

Polman, A.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Qiu, M.

Raether, H.

H. Raether, Surface Plasmons On Smooth and Rough Surfaces and On Gratings (Springer-Verlag, 1988).

Reinhardt, C.

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[CrossRef]

Salerno, M.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

Sarid, D.

A. E. Craig, G. A. Olson, and D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Satuby, Y.

Schider, G.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Seidel, A.

Selker, M. D.

Shelton, D. J.

Smith, C. W.

Smith, D.

Smolyakov, G. A.

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
[CrossRef]

Soref, R.

Stegeman, G. I.

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stepanov, A. L.

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

Stern, E. A.

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960).
[CrossRef]

Sun, G.

Sun, Z.

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
[CrossRef]

Tamir, T.

Teshima, R.

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

Veronis, G.

Vesseur, E. J. R.

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Wang, Y.

Weeber, J. C.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

Wendler, L.

L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

Yan, M.

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zia, R.

Appl. Phys. Lett. (8)

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett. 79, 51–53 (2001).
[CrossRef]

D. K. Gramotnev, and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

Z. Sun, “Vertical dielectric-sandwiched thin metal layer for compact, low-loss long range surface plasmon waveguiding,” Appl. Phys. Lett. 91, 111112 (2007).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Surface plasmon dielectric waveguides,” Appl. Phys. Lett. 87, 241106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92, 083110 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Al-Bader, “Optical transmission on metallic wires—fundamental modes,” IEEE J. Quantum Electron. 40, 325–329 (2004).
[CrossRef]

J. Appl. Phys. (3)

L. Wendler, and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structures,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102, 053105–053108 (2007).
[CrossRef]

R. Adato, and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105, 034306–034311 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (16)

A. Degiron, and D. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express 7, 329–335 (2000).
[CrossRef]

Y. Satuby, and M. Orenstein, “Surface plasmon-polariton modes in deep metallic trenches—measurement and analysis,” Opt. Express 15, 4247–4252 (2007).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
[CrossRef]

J. Guo, and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
[CrossRef]

J. Chen, G. A. Smolyakov, S. R. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
[CrossRef]

J. Guo, and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16, 1232–1237 (2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18, 11791–11799 (2010).
[CrossRef]

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 7279–7290 (2006).
[CrossRef]

R. Adato and J. Guo, “Characteristics of ultra-long range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[CrossRef]

R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008).
[CrossRef]

E. Feigenbaum and M. Orenstein, “Nano plasmon polariton modes of a wedge cross section metal waveguide,” Opt. Express 14, 8779–8784 (2006).
[CrossRef]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[CrossRef]

R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15, 12174–12182 (2007).
[CrossRef]

Opt. Lett. (8)

Phys. Rev. (2)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130–136 (1960).
[CrossRef]

Phys. Rev. B (8)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

J. Q. Lu, and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

I. V. Novikov, and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

A. D. Boardman, G. C. Aers, and R. Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B 24, 5703–5712 (1981).
[CrossRef]

J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef]

Proc. SPIE (1)

R. Adato and J. Guo, “Novel metal-dielectric structures for guiding ultra-long-range surface plasmon-polaritons at optical frequencies,” Proc. SPIE 6641, 66410G (2007).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons On Smooth and Rough Surfaces and On Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1.

(a) 3D view of the triangular nanoridge plasmon waveguide. (b) Cross section of the triangular nanoridge plasmon waveguide.

Fig. 2.
Fig. 2.

Electric field intensity distributions of the 120 nm wide triangular nanoridge plasmon waveguide with triangle heights of (a) 0, (b) 20, (c) 34.6, (d) 40, (e) 60, and (f) 80 nm at 1.55 μm wavelength.

Fig. 3.
Fig. 3.

Dispersion curves of the silver triangular nanoridge plasmon waveguides of different triangle heights and the comparison with the dispersion curve of the silver–air flat plasmon mode.

Fig. 4.
Fig. 4.

(a) Real part of the mode index versus wavelength for different triangle heights and the comparison with the real part of the silver–air flat plasmon mode index. (b) Imaginary part of the mode index versus wavelength for different triangle heights and the comparison with the imaginary part of the silver–air flat plasmon mode index.

Fig. 5.
Fig. 5.

Real and imaginary parts of the mode index as functions of the triangle height at 1.55 μm wavelength.

Fig. 6.
Fig. 6.

(a) Propagation distance versus wavelength and triangle height. (b) Propagation distance of the triangular nanoridge mode as a function of free space wavelength for different triangle heights.

Fig. 7.
Fig. 7.

(a) Mode size versus wavelength and triangle height. (b) Mode size of the triangular nanoridge plasmon mode as a function of free space wavelength for different triangle heights.

Fig. 8.
Fig. 8.

(a) Figure-of-merit versus wavelength and triangle height. (b) Figure-of-merit versus wavelength for several triangle heights.

Fig. 9.
Fig. 9.

Propagation distance and figure-of-merit of 120-nm-wide triangular nanoridge plasmon waveguide mode versus the triangle height at 1.55 μm wavelength.

Fig. 10.
Fig. 10.

Propagation distance and figure-of-merit of triangular cross-section nanoridge waveguide mode versus triangle height and width of the nanoridge at 1.55 μm wavelength.

Fig. 11.
Fig. 11.

(a) 3D view of the inverted triangular nanoridge plasmon waveguide. (b) Cross section of the inverted triangle nanoridge plasmon waveguide.

Fig. 12.
Fig. 12.

Electric field intensity distributions of the 120-nm-wide inverted triangular nanoridge plasmon waveguide with inverted triangle depths of (a) 0, (b) 20, (c) 40, (d) 60, (e) 80, and (f) 100 nm, at 1.55 μm wavelength.

Fig. 13.
Fig. 13.

Dispersion curves of the silver inverted triangular nanoridge plasmon waveguides of different inverted triangle depths and comparison with the dispersion curve of the silver–air flat plasmon mode.

Fig. 14.
Fig. 14.

(a) Real part of the mode index versus wavelength for different inverted triangle depths and comparison with the real part of the silver–air flat plasmon mode index. (b) Imaginary part of the mode index versus wavelength for different inverted triangle depths and comparison with the imaginary part of the silver–air flat plasmon mode index.

Fig. 15.
Fig. 15.

Real and imaginary parts of the mode index as functions of the inverted triangle depth at 1.55 μm wavelength.

Fig. 16.
Fig. 16.

(a) Propagation distance versus wavelength and inverted triangle depth. (b) Propagation distance of the inverted triangular nanoridge mode as a function of free space wavelength for different inverted triangle depths.

Fig. 17.
Fig. 17.

(a) Mode size versus the wavelength and inverted triangle depth. (b) Mode size of the inverted triangular nanoridge plasmon mode as a function of free space wavelength for different inverted triangle depths.

Fig. 18.
Fig. 18.

(a) Figure-of-merit versus wavelength and inverted triangle depth. (b) Figure-of-merit versus the wavelength for several inverted triangle depths.

Fig. 19.
Fig. 19.

Propagation distance and figure-of-merit of inverted triangular nanoridge plasmon waveguide mode versus the inverted triangle depth at 1.55 μm wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(βjα)2+(γjδ)2=εdko2,
FoM=(1/2α)/(w+1/δ).

Metrics