Abstract

We utilize the contra-propagating cavity modes that arise from the evanescent coupling of both the resonators to the bus waveguide in a twin coupled traveling-wave microresonators (MRs) system to generate flat-band slow light (SL). The contra-propagating cavity modes will generate multipeaks in the resonance spectra. Flat-band SL can be generated if such multipeaks become undistinguishable and merge into one single broadened peak that is maximally flat when the inter-resonator coupling strength is optimized relative to the resonators-to-bus-waveguide coupling strengths. The bandwidth and the group delay can be tuned by adjusting the coupling strengths. It is shown that the delay-bandwidth products of the output light at the through (reflection) port are 3- to 12-fold (6- to 24-fold) higher than that of conventional MR-based SL systems. Fabrication tolerance and cavity losses analyses have also revealed that the proposed scheme is rather robust to the fabrication errors and limitations of current state-of-the-art semiconductor processing technology.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30–32 (2005).
  2. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, 2004).
  3. K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007).
    [CrossRef]
  4. H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and M. H. J. W. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32, 2620–2622 (2007).
    [CrossRef]
  5. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
    [CrossRef]
  6. T. Y. L. Ang and N. Q. Ngo, “Harnessing coupler-induced localized backscattering for enhanced fast and slow light performances in a traveling wave microresonator,” J. Opt. Soc. Am. B 27, 2639–2647 (2010).
    [CrossRef]
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  8. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  9. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004).
    [CrossRef]
  10. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [CrossRef]
  11. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009).
    [CrossRef]
  12. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
    [CrossRef]
  13. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).
  15. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004).
    [CrossRef]
  16. F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).
  17. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).
  18. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” Opt. Express 19, 12227–12240 (2011).
    [CrossRef]
  19. Y. Chung, D. G. Kim, and N. Dagli, “Reflection properties of coupled-ring reflectors,” J. Lightwave Technol. 24, 1865–1874 (2006).
    [CrossRef]
  20. I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005).
    [CrossRef]
  21. L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
    [CrossRef]
  22. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
    [CrossRef]
  23. A. H. Atabaki, B. Momeni, A. A. Eftekhar, E. S. Hosseini, S. Yegnanarayanan, and A. Adibi, “Tuning of resonance-spacing in a traveling-wave resonator device,” Opt. Express 18, 9447–9455 (2010).
    [CrossRef]
  24. W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).
  25. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [CrossRef]
  26. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
    [CrossRef]
  27. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).
  28. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

2011 (1)

2010 (3)

2009 (2)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009).
[CrossRef]

2008 (2)

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
[CrossRef]

2007 (6)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007).
[CrossRef]

H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and M. H. J. W. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32, 2620–2622 (2007).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

2006 (2)

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

Y. Chung, D. G. Kim, and N. Dagli, “Reflection properties of coupled-ring reflectors,” J. Lightwave Technol. 24, 1865–1874 (2006).
[CrossRef]

2005 (3)

I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005).
[CrossRef]

D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30–32 (2005).

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[CrossRef]

2004 (4)

2001 (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Adibi, A.

Ang, T. Y. L.

Atabaki, A. H.

Baets, R.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bettotti, P.

Bogaerts, W.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Borreman, A.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Brouckaert, J.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Chen, Y. L.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

Chin, M. K.

Chremmos, I.

I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005).
[CrossRef]

Chung, Y.

Dagli, N.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Eftekhar, A. A.

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Gauthier, D.

D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30–32 (2005).

Grover, R.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

Guider, R.

Guo, G. C.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

Han, Z.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

Hanamura, R.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Heebner, J.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

Heideman, R. G.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Hoekstra, M. H. J. W.

Hosseini, E. S.

Ibrahim, T.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

Ilchenko, V. S.

Jiang, W.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

Kim, D. G.

Kimerling, L. C.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Lee, M. C. M.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Liu, L.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Madsen, C. K.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Maleki, L.

Mancinelli, M.

Mario, L. Y.

Masi, M.

Matsko, A. B.

Matsumoto, T.

Milonni, P. W.

P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, 2004).

Momeni, B.

Ngo, N. Q.

O’Boyle, M.

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

Pavesi, L.

Poon, J. K. S.

Prabhu, A. M.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

Roelkens, G.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Roeloffzen, C. G. H.

H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and M. H. J. W. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32, 2620–2622 (2007).
[CrossRef]

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Savchenkov, A. A.

Scheuer, J.

Schwelb, O.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

Selvaraja, S.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Sparacin, D. K.

Spector, S. J.

Taillaert, D.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Tomita, M.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007).
[CrossRef]

Totsuka, K.

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled-microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26, 813–818 (2009).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007).
[CrossRef]

Tsay, A.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

Uranus, H. P.

Uzunoglu, N.

I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005).
[CrossRef]

Van, V.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

van Etten, W.

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Van Thourhout, D.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Vanacharla, M. R.

Vermeulen, D.

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

Wu, M. C.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

Xiao, Y. F.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

Xu, Y.

Yao, J.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Yariv, A.

Yegnanarayanan, S.

Zhuang, L.

H. P. Uranus, L. Zhuang, C. G. H. Roeloffzen, and M. H. J. W. Hoekstra, “Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations,” Opt. Lett. 32, 2620–2622 (2007).
[CrossRef]

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Zou, X. B.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

Appl. Phys. Lett. (1)

F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89, 041122 (2006).

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

I. Chremmos and N. Uzunoglu, “Reflective properties of double-ring resonator system coupled to a waveguide,” IEEE Photon. Technol. Lett. 17, 2110–2112 (2005).
[CrossRef]

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[CrossRef]

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Extreme miniaturization of silicon add-drop microring filters for VLSI photonics applications,” IEEE Photon. Technol. Lett. 2, 436–444 (2010).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Nature (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65 (2007).

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (2)

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75, 063833 (2007).

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Phys. Rev. E (1)

K. Totsuka and M. Tomita, “Dynamics of fast and slow light propagation through a microsphere-optical-fiber-system,” Phys. Rev. E 75, 6610–6614 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef]

Phys. World (1)

D. Gauthier, “Slow light brings faster communication,” Phys. World 18, 30–32 (2005).

Proc. SPIE (1)

W. Bogaerts, L. Liu, S. Selvaraja, J. Brouckaert, D. Taillaert, D. Vermeulen, G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon nanophotonic waveguides and their applications,” Proc. SPIE 7134, 71341O (2008).

Other (3)

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication, and Applications (Springer-Verlag, 2008).

P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Taylor & Francis, 2004).

C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proc. IEEE/LEOS Benelux Chapter, 10th Symp (2005), 71–74.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the proposed twin coupled traveling-wave MRs.

Fig. 2.
Fig. 2.

The transmission, effective phase shift, and group delay spectra of different resonator systems. In (ai) to (aiii), the plots in blue show the spectra at the through port of a single resonator system (i.e., only resonator 1 exists in Fig. 1) with κ2=0.08, T11. The plots in red in (ai) to (aiii) show the spectra at the through port of a twin coupled resonators system that has only one resonator directly coupled to the bus WG (i.e., κ3=0 in Fig. 1) with κ1=0.05, κ2=0.08, τ1=τ21. The spectra at the through port of our proposed twin coupled resonators with κ1=0.05, κ2=κ3=0.08, and τ1=τ2=1 are shown in (bi) to (biii), while those at the reflection port are shown in (ci) to (ciii).

Fig. 3.
Fig. 3.

Evolution in the resonance spectra towards flat-band SL for the proposed device with κ2=κ3=κ=0.3 as κ1 is decreased progressively. Note that the horizontal arrows point in the direction of decreasing κ. Resonance spectra at the through port are shown in (ai) to (aiii), while those at the reflection port are shown in (bi) to (biii).

Fig. 4.
Fig. 4.

Combinations of κ1 and κ needed for flat-band SL at the through and reflection ports of our device. The ratio Ψ=ks, T/κs, R is also shown, where κs,T and κs,R are the values of κ1 that give flat-band SL at the through port and the reflection ports, respectively, for a given κ. Note that κ=κ2=κ3.

Fig. 5.
Fig. 5.

Demonstration of tunable flat-band SL for the proposed device for different κ1 and κ. The resonance spectra at the through port are shown in (ai) to (aiii), while the resonance spectra at the reflection port are shown in (bi) to (biii). The used values of κ are κ=0.3 (blue plots), κ=0.35 (red plots), κ=0.4 (green plots), κ=0.45 (pink plots), κ=0.5 (brown plots), κ=0.55 (yellow plots), and κ=0.6 (black plots). Note that the horizontal arrows point in the direction of decreasing κ and corresponding values of κ1 used can be found from Fig. 4.

Fig. 6.
Fig. 6.

The normalized group delay (left axis) and the normalized usable resonance bandwidth (right axis) of the flat-band SL for the through port (solid curves) and reflection port (dotted curves) of the proposed device at different κ. Corresponding values of κ1 can be found in Fig. 4. The inset shows the DBP.

Fig. 7.
Fig. 7.

The effects of cavity losses on the transmission Tq and group delay tg,q spectra of the flat-band SL at the (ai)–(aii) through port and the (bi)–(bii) reflection port of the proposed device with (κ,κ1)=(0.3,0.0471) for the through port and (κ,κ1)=(0.3,0.0195) for the reflection port.

Fig. 8.
Fig. 8.

The effects of cavity losses on the transmission Tq and group delay tg,q of the flat-band SL at δ=2πm for the (ai)–(aii) through port and (bi)–(bii) reflection port of our device for different κ1 and κ. The used values of κ are κ=0.3 (blue plots), κ=0.4 (red plots), κ=0.5 (green plots), and κ=0.6 (black plots). Note that the horizontal arrows point in the direction of increasing κ and corresponding values of κ1 can be found in Fig. 4.

Fig. 9.
Fig. 9.

The effects of varying coupler losses on the transmission Tq and group delay tg,q spectra of the flat-band SL at the (ai)–(aii) through port and the (bi)–(bii) reflection port of the proposed device with (κ,κ1)=(0.3,0.471) for the through port and (κ,κ1)=(0.3,0.0195) for the reflection port. Propagating loss of each cavity is fixed at τ=0.999.

Fig. 10.
Fig. 10.

The effects of coupler losses on the transmission Tq and group delay tg,q of the flat-band SL at δ=2πm for the (ai)–(aii) through port and the (bi)–(bii) reflection port of our device for different κ1 and κ. The used values of κ are κ=0.3 (blue plots), κ=0.4 (red plots), κ=0.5 (green plots), and κ=0.6 (black plots). Note that the horizontal arrows point in the direction of increasing κ and corresponding values of κ1 used for each port can be found in Fig. 4.

Tables (1)

Tables Icon

Table 1. Comparison of the DBPs Between Different Traveling-Wave MR-based SL Schemes

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

[c2d2d2+c2+]T=S1[c1+d1+d1c1]T,
[a1b1b1+a1+]T=S2[A1B1B1+A1+]T,
[A2+B2+B2A2]T=S3[a2+b2+b2a2]T,
Si=([Ui]00[Ui]),withUi=(ri/(jκi)1/(jκi)(κi2+ri2)/(jκi)ri/(jκi)),
[c1+d1+d1c1]T=P1[a1b1b1+a1+]T,
[a2+b2+b2a2]T=P2[c2d2d2+c2+]T,
Pn=(000τn1/4exp(jδn/4)00τn3/4exp(j3δn/4)00τn3/4exp(j3δn/4)00τn1/4exp(jδn/4)000),
[A2+A2]T=(exp(jβwLw)00exp(jβwLw))[A1+A1]T,
[A1+exp(jβwLw)B2+0A1exp(jβwLw)]T=Y[A1B1B1+A1+]T,
[A1/B1+B1/B1+A1+/B1+B2+/B1+]=[Y11Y12Y14exp(jβwLw)0Y21Y22Y241Y31Y32Y340Y41exp(jβwLw)Y42Y440]1[Y13Y23Y33Y43].
δ1=δ0sin1κ1,δ2=δ0+sin1κ1,
ξT=[2r2cos(2δ)+4rr1(r2+1)cos(δ)2r12(r4+1)+r2(r24)+1]exp(jδ){4rr1[r2exp(jδ)+exp(jδ)][r4exp(2jδ)+exp(2jδ)]2r2[1+2r12]},ξR=2j{[cos(2δ)2cos2(δ)]r2+[2r2r41]r12r2+r4+1}{2rcos(δ)r2r1r1}exp(jδ)[r2exp(jδ)+exp(jδ)2rr1]2[1r12]1/2[1r2].
δ1,1δ1κ2/2=δ0sin1κ1κ2/2,δ1,2/δ1+κ2/2=δ0sin1κ1+κ2/2,δ2,1δ2κ2/2=δ0+sin1κ1κ2/2,δ2,2δ2+κ2/2=δ0+sin1κ1+κ2/2.
δ1=δ2=δ0=2πm,δ1,1=δ2,12πmκ2/2,δ1,2=δ2,22πm+κ2/2.
δ1=δ2=δ1,1=δ1,2=δ2,1=δ2,2=δ0=2πm.
κs,T=κ1=κ22κ2,κs,R=κ1=21/2κ22κ2+2(1κ2),
tgm,T=3+r2(1r2)trt,tgm,R=rB1/2+r23rB1/2r21trt,
Δδu,Tsin1[κ221r(2κ2)],Δδu,R43sin1[κ221r(2+r2κ2)].

Metrics