Abstract

We propose a scheme to realize tunable optimal quantum cloning machines with trapped atoms. Through selecting a pairing of Raman transitions and choosing suitable parameters of the external fields, we can not only realize an optimal symmetric (asymmetric) universal quantum cloning machine and phase-covariant cloning machine, but also an optimal symmetric economical phase-covariant cloning machine. Additionally, the atomic excited states and photonic states can be adiabatically eliminated. In our scheme, the quantum cloning machine can copy the information from one trapped atom to arbitrary two distant trapped atoms, which is significant to quantum communication and quantum computation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [CrossRef]
  2. V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996).
    [CrossRef]
  3. R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998).
    [CrossRef]
  4. D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
    [CrossRef]
  5. H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
    [CrossRef]
  6. T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004).
    [CrossRef]
  7. C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
    [CrossRef]
  8. H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
    [CrossRef]
  9. A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
    [CrossRef]
  10. M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809 (2003).
    [CrossRef]
  11. X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
    [CrossRef]
  12. P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
    [CrossRef]
  13. W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006).
    [CrossRef]
  14. W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006).
    [CrossRef]
  15. S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005).
    [CrossRef]
  16. W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011).
    [CrossRef]
  17. S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
    [CrossRef]
  18. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
    [CrossRef]
  19. N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
    [CrossRef]
  20. N. J. Cerf, “Pauli Cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000).
    [CrossRef]
  21. V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002).
    [CrossRef]
  22. D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
    [CrossRef]
  23. H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
    [CrossRef]
  24. D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
    [CrossRef]
  25. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  26. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
    [CrossRef]
  27. S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009).
    [CrossRef]

2011 (1)

2010 (1)

S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
[CrossRef]

2009 (1)

S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009).
[CrossRef]

2006 (3)

W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006).
[CrossRef]

W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

2005 (2)

S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

2004 (2)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004).
[CrossRef]

2003 (3)

P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
[CrossRef]

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809 (2003).
[CrossRef]

2002 (3)

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002).
[CrossRef]

2001 (1)

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

2000 (3)

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

N. J. Cerf, “Pauli Cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000).
[CrossRef]

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

1999 (2)

C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

1998 (2)

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998).
[CrossRef]

1996 (1)

V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996).
[CrossRef]

1989 (1)

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

1982 (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Alexanian, M.

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809 (2003).
[CrossRef]

Bergmann, K.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

Bouwmeester, D.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Bruß, D.

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

Bruss, D.

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

Buller, G. S.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Bužek, V.

V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996).
[CrossRef]

Cerf, N. J.

N. J. Cerf, “Pauli Cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000).
[CrossRef]

Chen, M. Y.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Chen, Z. H.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Cinchetti, M.

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

Cummins, H. K

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

D’Ariano, G. M.

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

Du, J.

T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004).
[CrossRef]

Durt, T.

T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004).
[CrossRef]

Fan, H.

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

Fernandez, V.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Furusawa, A.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Furze, A.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Gaubatz, U.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

Georgiades, N. P.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Gordon, K. J.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Griffiths, R. B.

C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
[CrossRef]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005).
[CrossRef]

Hillery, M.

V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996).
[CrossRef]

Hioe, F. T.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

Howell, J. C.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Ilchenko, V. S.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Imai, H.

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

Jones, C.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Jones, J. A.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Karimipour, V.

V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002).
[CrossRef]

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Kuklinski, J. R.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

Lamas-Linares, A.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Li, X. H.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Lin, X. M.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Macchiavello, C.

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

Matsumoto, K.

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

Milman, P.

P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
[CrossRef]

Mosca, M.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Niu, C. S.

C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
[CrossRef]

Nori, F.

S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
[CrossRef]

Ollivier, H.

P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
[CrossRef]

Peach, J. M.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Raimond, J. M.

P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
[CrossRef]

Rezakhani, A. T.

V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002).
[CrossRef]

Shore, B. W.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Simon, C.

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Soffe, N. F.

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Suominen, K. A.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Townsend, P. D.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Vernooy, D. W.

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Vitanov, N. V.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Wadati, M.

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

Wang, X. B.

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

Werner, R. F.

R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Wootters, W. K.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Xiong, W.

Xue, P.

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Yang, C. P.

S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
[CrossRef]

Ye, L.

W. Xiong and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011).
[CrossRef]

W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006).
[CrossRef]

W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006).
[CrossRef]

Zhang, W. H.

W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006).
[CrossRef]

W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006).
[CrossRef]

Zheng, S. B.

S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
[CrossRef]

S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009).
[CrossRef]

S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005).
[CrossRef]

Zurek, W. H.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Appl. Phys. Lett. (1)

S. B. Zheng, “Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities,” Appl. Phys. Lett. 94, 154101 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

N. V. Vitanov, K. A. Suominen, and B. W. Shore, J. Phys. B 32, 4535–4546 (1999).
[CrossRef]

Nature (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[CrossRef]

Phys. Lett. A (2)

W. H. Zhang and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006).
[CrossRef]

W. H. Zhang and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006).
[CrossRef]

Phys. Rev. A (17)

S. B. Zheng and G. C. Guo, “Entangling and cloning machine with increasing robustness against decoherence as the number of qubits increases,” Phys. Rev. A 72, 064303–064307 (2005).
[CrossRef]

S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741–6744 (1989).
[CrossRef]

M. Alexanian, “Cavity coherent-state cloning via Raman scattering,” Phys. Rev. A 67, 033809 (2003).
[CrossRef]

X. M. Lin, P. Xue, M. Y. Chen, Z. H. Chen, and X. H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input-output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003).
[CrossRef]

V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996).
[CrossRef]

R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998).
[CrossRef]

D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003).
[CrossRef]

T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004).
[CrossRef]

C. S. Niu and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764–2776 (1999).
[CrossRef]

V. Karimipour and A. T. Rezakhani, “Generation of phase-covariant quantum cloning,” Phys. Rev. A 66, 052111 (2002).
[CrossRef]

D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000).
[CrossRef]

H. Fan, K. Matsumoto, X. B. Wang, and M. Wadati, “Quantum cloning machines for equatorial qubits,” Phys. Rev. A 65, 012304 (2001).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

H. K Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, Phys. Rev. Lett. 88, 187901 (2002).
[CrossRef]

N. J. Cerf, “Pauli Cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000).
[CrossRef]

Science (1)

A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic diagram of n distant atoms trapped in separate coupled cavities, which are connected by short optical fibers.

Fig. 2.
Fig. 2.

Atomic level configuration and transitions. The transition |el|rl of the lth atom is driven by a classical laser field with detuning Δ1,l and Rabi frequency Ωl, while the transition |gl|rl is coupled to the cavity mode with the coupling constant g and has a detuning Δ2.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Heff=l{εl|elel|+m[χl,msl+smei(Δ1,mΔ1,l)t+H.C.]},
εl=kΩl2g2{Δ11+[Δ22νcos(kπ/n)]1}28n[Δ22νcos(kπ/n)Δ1,lΩl2Δ1,l,χl,m=k12λk,lλk,m(δk,l1+δk,m1)e2i(lm)kπ/n,λk,s=Ωsg22n{Δ11+[Δ22νcos(kπ/n)]1},δk,s=Δ22νcos(kπ/n)Δ1,s,s=l,m,Sl+=|elgl|,Sl=|glel|.
H=ε(|epep|+|eqeq|)+(χp,qsp+sq+H.C.).
|gp|gq|gp|gq,|ep|eqei2εt|ep|eq,|ep|gqeiεt(cosχp,qt|ep|gqisinχp,qt|gp|eq),|gp|eqeiεt(cosχp,qt|gp|eqisinχp,qt|ep|gq).
Ga,b(εt,χp,qt)=(10000eiεtcosχp,qtieiεtsinχp,qt00ieiεtsinχp,qteiεtcosχp,qt0000ei2εt).
(α|g1βeiϕ|e1)|g2|g3.
(α|g1βeiϕ|e1)[cosθ(t)|g2sinθ(t)|e2]|g3.
|g112(|g1|e1),
|e112(|e1+|g1).
(α|1βeiϕ|+1)[cosθ(t)|g2sinθ(t)|e2]|g3,
{cosθ|g1[α(|g2i|e2)βeiϕ(|g2+i|e2)]sinθ|e1[α(i|g2|e2)βeiϕ(i|g2+|e2)]}|g3.
[cosθ|g1(α|2βeiϕ|+2)+sinθ|e1(α|+2βeiϕ|2)]|g3.
[cosθ|g1(α|2βeiϕ|+2)|g3+sinθeiδ(cosφ|e1|g3isinφ|g1|e3)(α|+2βeiϕ|2)].
[cosθ|g1(α|2βeiϕ|+2)|g3+sinθeiδ(cosφ|e1|g3+sin|g1|e3)(α|+2βeiϕ|2)].
[cosθ|1(α|g2+βeiϕ|e2)|3sinθeiδ(cosφ|+1|3+sin|1|+3)(α|e2+βeiϕ|g2)].
cosθ(α|g1|2+βeiϕ|e1|+2)|3sinθeiδ[cosφ(α|e1|2βeiϕ|g1|+2)|3+sinφ(α|e1|+2βeiϕ|g1|2)|+3].
cosθ(α|+1|2|g3+βeiϕ|1|+2|e3)sinθeiδ[cosφ(α|1|2|e3βeiϕ|+1|+2|g3)+sinφ(α|+1|+2|e3βeiϕ|1|2|g3)].
cosθ(α|g1|g2|g3+βeiϕ|e1|e2|e3)sinθeiδ[cosφ(α|e1|g2|e3βeiϕ|g1|e2)|g3+sinφ(α|g1|e2|e3βeiϕ|e1|g2|g3)].
α[cosθ|g1|g2|g3+sinθ(cosφ|e1|g2|e3+sinφ|g1|e2|e3)]+βeiϕ[cosθ|e1|e2|e3+sinθ(cosφ|g1|e2|g3sinφ|e1|g2|g3)].
α[|g1|g2|g3+(m|e1|g2|e3+n|g1|e2|e3)]/S+βeiϕ[|e1|e2|e3+(m|g1|e2|g3+n|e1|g2|g3)]/S,
α[23|g1|g2|g3+13(|e1|g2+|g1|e2)|e3/2]+βeiϕ[23|e1|e2|e3+13(|g1|e2|e1|g2)|g3/2].
α[cosθ|g1|g2|g3+sinθ2(|e1|g2+|g1|e2)|e3]+βeiϕ[cosθ|e1|e2|e3+sinθ2(|g1|e2|e1|g2)|g3].
(|g1|g2|g3cosφ|e1|g2|e3+sinφ|g1|e2|e3)/2+eiϕ(cosθ|e1|e2|e3+cosφ|g1|e2|g3sinφ|e1|g2|g3)/2.
[(|g1|g2|g3+(|e1|g2+|g1|e2)|e3/2]/2+eiϕ[cosθ|e1|e2|e3+(|g1|e2|e1|g2)|g3/2]/2,
12[13|g1|g2|g3+23(|e1|g2+|g1|e2)|e3/2]+12eiϕ[13|e1|e2|e3+23(|g1|e2|e1|g2)|g3/2].

Metrics