Abstract

We report on the nonlinear optical properties (absorption and refraction) of monocrystalline chemical vapor deposition diamond studied by photoluminescence and Z-scan measurements. The studied spectral interval 2.8–6.2 eV can be divided into three regions in which the one-, two- and three-photon absorption (1PA, 2PA, 3PA) dominate. We obtained the values of 2PA and 3PA coefficients of diamond (α2=0.9cm/GW at 4 eV and α3=2.3×104cm3/GW2 at 3.1 eV) and of the nonlinear refractive index (8×107cm2/GW at 2.9 eV) for several irradiation photon energies. We interpret the measured spectral dependence of nonlinear absorption coefficients in terms of direct and indirect multiphoton absorption.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Madelung, ed., Semiconductors-Basic Data (Springer-Verlag, 1996).
  2. S. V. Gagarskii and K. V. Prikhodko, “Measuring the parameters of femtosecond pulses in a wide spectral range on the basis of the multiphoton-absorption effect in a natural diamond crystal,” J. Opt. Technol. 75, 139–143 (2008).
    [CrossRef]
  3. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two-photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurement,” Opt. Lett. 16, 499–501 (1991).
    [CrossRef]
  4. T. Roth and R. Laenen, “Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy,” Opt. Commun. 189, 289–296 (2001).
    [CrossRef]
  5. S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995).
    [CrossRef]
  6. F. Trojánek, K. Žídek, B. Dzurňák, M. Kozák, and P. Malý, “Nonlinear optical properties of nanocrystalline diamond,” Opt. Express 18, 1349–1357 (2010).
    [CrossRef]
  7. M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
    [CrossRef]
  8. J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
    [CrossRef]
  9. M. G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca, “Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption,” Opt. Express 18, 9628–9633 (2010).
    [CrossRef]
  10. S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
    [CrossRef]
  11. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
    [CrossRef]
  12. C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
    [CrossRef]
  13. S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
    [CrossRef]
  14. P. J. Dean and I. H. Jones, “Recombination radiation from diamond,” Phys. Rev. 133, A1698–A1705 (1964).
    [CrossRef]
  15. R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
    [CrossRef]
  16. F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
    [CrossRef]
  17. D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
    [CrossRef]
  18. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
    [CrossRef]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2002).
  20. I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
    [CrossRef]
  21. H. S. Brandi and C. B. de Araujos, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983).
    [CrossRef]
  22. C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33, 2626–2628 (2008).
    [CrossRef]
  23. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
    [CrossRef]
  24. J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
    [CrossRef]
  25. M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003).
    [CrossRef]
  26. W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
    [CrossRef]

2011

J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
[CrossRef]

2010

2008

2007

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

2005

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

2004

R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
[CrossRef]

2003

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003).
[CrossRef]

2001

T. Roth and R. Laenen, “Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy,” Opt. Commun. 189, 289–296 (2001).
[CrossRef]

1995

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995).
[CrossRef]

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

1993

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

1992

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

1991

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

1988

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

1984

1983

H. S. Brandi and C. B. de Araujos, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983).
[CrossRef]

1974

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

1967

F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
[CrossRef]

1964

P. J. Dean and I. H. Jones, “Recombination radiation from diamond,” Phys. Rev. 133, A1698–A1705 (1964).
[CrossRef]

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
[CrossRef]

Bloembergen, N.

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2002).

Brandi, H. S.

H. S. Brandi and C. B. de Araujos, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983).
[CrossRef]

Catalano, I. M.

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

Cheng, J. L.

J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
[CrossRef]

Cingolani, A.

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

Cingolani, R.

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

Cirloganu, C. M.

Clark, C. D.

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
[CrossRef]

Cohanoschi, I.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Correa, D. S.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Dadap, J. I.

de Araujos, C. B.

H. S. Brandi and C. B. de Araujos, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983).
[CrossRef]

De Boni, L.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Dean, P. J.

P. J. Dean and I. H. Jones, “Recombination radiation from diamond,” Phys. Rev. 133, A1698–A1705 (1964).
[CrossRef]

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
[CrossRef]

DeSalvo, R. J.

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

Dinu, M.

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003).
[CrossRef]

Downer, M. C.

Dzurnák, B.

Focht, G. B.

Fuchs, D.

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

Gagarskii, S. V.

Hagan, D. J.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33, 2626–2628 (2008).
[CrossRef]

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Harris, P. V.

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
[CrossRef]

He, J.

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Herman, F.

F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
[CrossRef]

Hernandez, F. E.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Ji, W.

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Jones, I. H.

P. J. Dean and I. H. Jones, “Recombination radiation from diamond,” Phys. Rev. 133, A1698–A1705 (1964).
[CrossRef]

Karch, K.

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

Kortum, R. L.

F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
[CrossRef]

Kozák, M.

Kuglin, C. D.

F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
[CrossRef]

Laenen, R.

T. Roth and R. Laenen, “Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy,” Opt. Commun. 189, 289–296 (2001).
[CrossRef]

Lepore, M.

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

Levenson, M. D.

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Li, H.

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Logothetidis, S.

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

Malý, P.

Mazur, E.

Mendonca, C. R.

M. G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca, “Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption,” Opt. Express 18, 9628–9633 (2010).
[CrossRef]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Mi, J.

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Misoguti, L.

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Olszak, P. D.

Padilha, L. A.

Pavone, P.

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

Pearl, S.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Petalas, J.

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

Polatoglou, H. M.

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

Preuss, S.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995).
[CrossRef]

Prikhodko, K. V.

Qu, Y.

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Reitze, D. H.

Rioux, J.

J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
[CrossRef]

Rotenberg, N.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Roth, T.

T. Roth and R. Laenen, “Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy,” Opt. Commun. 189, 289–296 (2001).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Sauer, R.

R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
[CrossRef]

Schutt, O.

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Shih, T.

Sipe, J. E.

J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
[CrossRef]

Soileau, M. J.

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

Strauch, D.

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

Stuke, M.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995).
[CrossRef]

Teofilov, N.

R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
[CrossRef]

Thonke, K.

R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
[CrossRef]

Trojánek, F.

van Driel, H. M.

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

Van Stryland, E. W.

C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett. 33, 2626–2628 (2008).
[CrossRef]

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Vivas, M. G.

Voss, T.

Webster, S.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Wherrett, B. S.

Windl, W.

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

Žídek, K.

Appl. Phys. Lett.

S. Preuss and M. Stuke, “Subpicosecond ultraviolet laser ablation of diamond: nonlinear properties at 248 nm and time-resolved characterization of ablation dynamics,” Appl. Phys. Lett. 67, 338–340 (1995).
[CrossRef]

S. Pearl, N. Rotenberg, and H. M. van Driel, “Three photon absorption in silicon for 2300–3300 nm,” Appl. Phys. Lett. 93, 131102 (2008).
[CrossRef]

J. L. Cheng, J. Rioux, and J. E. Sipe, “Full band structure calculation of two-photon indirect absorption in bulk silicon,” Appl. Phys. Lett. 98, 131101 (2011).
[CrossRef]

Diamond Relat. Mater.

R. Sauer, N. Teofilov, and K. Thonke, “Exciton condensation in diamond,” Diamond Relat. Mater. 13, 691–699 (2004).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

M. Dinu, “Dispersion of phonon-assisted nonresonant third-order nonlinearities,” IEEE J. Quantum Electron. 39, 1498–1503 (2003).
[CrossRef]

Int. J. Quantum Chem.

F. Herman, R. L. Kortum, and C. D. Kuglin, “Energy band structure of diamond, cubic silicon carbide, silicon and germanium,” Int. J. Quantum Chem. 1, 533–566 (1967).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Technol.

J. Phys. C

H. S. Brandi and C. B. de Araujos, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983).
[CrossRef]

Opt. Commun.

T. Roth and R. Laenen, “Absorption of free carriers in diamond determined from the visible to the mid-infrared by femtosecond two-photon absorption spectroscopy,” Opt. Commun. 189, 289–296 (2001).
[CrossRef]

D. S. Correa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonca, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

P. J. Dean and I. H. Jones, “Recombination radiation from diamond,” Phys. Rev. 133, A1698–A1705 (1964).
[CrossRef]

Phys. Rev. B

W. Windl, P. Pavone, K. Karch, O. Schutt, and D. Strauch, “Second-order Raman spectra of diamond from ab initiophonon calculations,” Phys. Rev. B 48, 3164–3170 (1993).
[CrossRef]

S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, “Origin and temperature dependence of the first direct gap of diamond,” Phys. Rev. B 46, 4483–4494 (1992).
[CrossRef]

M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974).
[CrossRef]

Phys. Scr.

I. M. Catalano, A. Cingolani, R. Cingolani, and M. Lepore, “Interband two-photon absorption mechanisms in direct and indirect gap materials,” Phys. Scr. 37, 579–582 (1988).
[CrossRef]

Proc. Roy. Soc. London A

C. D. Clark, P. J. Dean, and P. V. Harris, “Intrinsic edge absorption in diamond,” Proc. Roy. Soc. London A 277, 312–329(1964).
[CrossRef]

Proc. SPIE

M. Sheik-Bahae, R. J. DeSalvo, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Optical nonlinearities in diamond,” Proc. SPIE 2428, 605–609 (1995).
[CrossRef]

Three-photon absorption in ZnO and ZnS crystals

J. He, Y. Qu, H. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005).
[CrossRef]

Other

O. Madelung, ed., Semiconductors-Basic Data (Springer-Verlag, 1996).

R. W. Boyd, Nonlinear Optics (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Dependence of PL signal on the excitation pulse energy for selected photon energies (symbols). Straight lines represent linear (solid), quadratic (dashed), and cubic (dotted) dependences. Inset, exciton line in diamond PL spectrum at room temperature.

Fig. 2.
Fig. 2.

Open-aperture Z-scan at irradiation photon energy of 4.0 eV (squares), parameters of the beam: w 0 = 10.2 μm , I 0 = 70 GW / cm 2 . Curves are fits by Eq. (1) (solid) and Eq. (1) (dotted).

Fig. 3.
Fig. 3.

Intensity dependence of the minimum Z-scan transmittance at irradiation photon energy of 4.0 eV (squares), the comparison with theory for 2PA and 3PA (solid and dotted curves, respectively).

Fig. 4.
Fig. 4.

Open-aperture Z-scan at irradiation photon energy 3.1 eV (squares), parameters of the beam: w 0 = 10 μm , I 0 = 720 GW / cm 2 , 3PA absorption coefficient from the fit (solid curve): α 3 = 2.3 × 10 4 cm 3 / GW 2 , comparison with the calculated 2PA Z-scan (dotted curve).

Fig. 5.
Fig. 5.

Intensity dependence of the minimum Z-scan transmittance at irradiation photon energy 3.1 eV (squares), the comparison with 2PA and 3PA theory (dotted and solid curves).

Fig. 6.
Fig. 6.

Open-aperture Z-scan at irradiation photon energy 3.54 eV (squares), parameters of the beam: w 0 = 10 μm , I 0 = 160 GW / cm 2 , 2PA and 3PA absorption coefficients from the fit (solid curve): α 2 = 0.08 cm / GW , α 3 = 4.5 × 10 3 cm 3 / GW 2 , comparison with the calculated 2PA (dotted curve) and 3PA (dashed curve) Z-scan curves.

Fig. 7.
Fig. 7.

Closed-aperture Z-scan (symbols) with fitted theoretical curves at irradiation photon energies 1.95 eV (squares): n 2 = 5.5 × 10 7 cm 2 / GW , 2.9 eV (circles): n 2 = 8 × 10 7 cm 2 / GW and 3.54 eV (triangles): n 2 = 9 × 10 7 cm 2 / GW . Inset, spectrum of nonlinear refractive index.

Fig. 8.
Fig. 8.

Spectral dependence of 2PA (squares) and 3PA (triangles) coefficients measured by Z-scan technique. The comparison with calculated direct 2PA (solid curve, E g = 6.9 eV ) and indirect 2PA (dashed curve, E g i = 5.48 eV ) spectra.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 P A : T ( z ) / T 0 = w 2 ( z ) π I 0 α 2 l w 0 2 ln | 1 + I 0 α 2 l w 0 2 e t 2 w 2 ( z ) | d t ,
3 P A : T ( z ) / T 0 = w 2 ( z ) 2 2 π α 3 l I 0 w 0 2 ln | 1 + w 4 ( z ) 2 I 0 2 α 3 l w 0 4 e 2 t 2 + 1 1 + w 4 ( z ) 2 I 0 2 α 3 l w 0 4 e 2 t 2 1 | d t ,
d I d z = n α n I n ,
z ( I ) = 1 α 2 I 1 α 2 I 0 + α 3 α 2 2 ( ln | ( α 3 I 0 + α 2 ) I ( α 3 I + α 2 ) I 0 | ) ,

Metrics