Abstract

An in-line Mach–Zehnder-interferometer-based two-dimensional (2-D) micrometric displacement sensor was fabricated by inserting a polarization maintaining fiber (PMF) with a length of 1 cm between two conventional single-mode fibers (SMFs). The left end of the PMF was mismatch fusion spliced with an SMF. The right end of the PMF was connected to another SMF without fusion splicing. Two independent interference patterns corresponding to the two orthogonal polarization modes in the PMF were obtained. The visibility of the interference patterns depends on the 2-D micrometric displacement of the SMF along the right end of the PMF on the slow axis and fast axis directions. Experimental results show that the 2-D micrometric displacement sensor with sensitivity of 0.669dB/μm on the slow axis direction and 0.301dB/μm on the fast axis direction was obtained. With the use of the intensity demodulation method, the proposed sensor can overcome temperature and displacement cross-sensitivity effects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
    [CrossRef]
  2. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  3. T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
    [CrossRef]
  4. X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
    [CrossRef]
  5. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  6. B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature and measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010).
    [CrossRef]
  7. Y. E. Fan, T. Zhu, L. L. Shi, and Y. J. Rao, “Highly sensitive refractive index sensor based on two cascaded special long-period fiber gratings with rotary refractive index modulation,” Appl. Opt. 50, 4604–4610 (2011).
    [CrossRef]
  8. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50, 1548–1553 (2011).
    [CrossRef]
  9. Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
    [CrossRef]
  10. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010).
    [CrossRef]
  11. O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
    [CrossRef]
  12. F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
    [CrossRef]
  13. B. Dong, D. P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010).
    [CrossRef]
  14. X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
    [CrossRef]
  15. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
    [CrossRef]
  16. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [CrossRef]
  17. B. Dong and J. Hao, “Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal interferometer based micro-displacement sensor,” J. Opt. Soc. Am. B 28, 2332–2336 (2011).
    [CrossRef]

2011 (4)

2010 (5)

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

2008 (1)

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

2007 (3)

2006 (2)

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
[CrossRef]

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Baptista, J. M.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Chan, C. C.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Chen, N.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

Chen, Z.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Choi, H. Y.

Chung, Y.

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Deng, M.

Dong, B.

Dong, X.

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
[CrossRef]

Dong, X. Y.

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Duan, D. W.

Fan, Y. E.

Frazão, O.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Hao, J.

Hao, J. Z.

Kim, M. J.

Kobelke, J.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Lee, B. H.

Liaw, C. Y.

Lin, B.

Liu, H.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Liu, S.

Liu, Y.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Loock, H. P.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Lu, P.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

Pang, F.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Rao, Y. J.

Santos, J. L.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Schuster, K.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Shao, L. Y.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

Shi, L. L.

Shum, P.

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
[CrossRef]

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Silva, S.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

Su, L.

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Tian, Z.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Tjin, S. C.

Viegas, J.

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Wang, D. N.

Wang, T.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Wang, Y.

Wei, L.

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Wong, W. C.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

Wu, D.

Xiao, H.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Yang, M.

Yao, J.

Yu, X.

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
[CrossRef]

Zeng, X.

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Zhou, D. P.

Zhou, W. J.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

Zhou, Y.

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

Zhu, T.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110–131113 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

O. Frazão, S. Silva, J. Viegas, J. M. Baptista, J. L. Santos, J. Kobelke, and K. Schuster, “All fiber Mach–Zehnder interferometer based on suspended twin-core fiber,” IEEE Photon. Technol. Lett. 22, 1300–1302 (2010).
[CrossRef]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

F. Pang, H. Liu, N. Chen, Y. Liu, X. Zeng, Z. Chen, and T. Wang, “Cladding-mode resonance of a double-cladding fiber at a near modal cut-off wavelength for RI sensing,” Meas. Sci. Technol. 21, 094028 (2010).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

X. Yu, P. Shum, and X. Dong, “Photonic-crystal-fiber-based Mach-Zehnder interferometer using long-period gratings,” Microw. Opt. Technol. Lett. 48, 1379–1383 (2006).
[CrossRef]

Opt. Commun. (2)

Y. Zhou, W. J. Zhou, C. C. Chan, W. C. Wong, and L. Y. Shao, “Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating,” Opt. Commun. 284, 5669–5672 (2011).
[CrossRef]

X. Y. Dong, L. Su, P. Shum, Y. Chung, and C. C. Chan, “Wavelength-selective all-fiber filter based on a single long-period fiber grating and a misaligned splicing point,” Opt. Commun. 258, 159–163 (2006).
[CrossRef]

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed 2-D micrometric displacement sensor. (b) Partial enlarged drawing of the sensing head. (c) Picture of the sensor head shown in the fusion splicer screen.

Fig. 2.
Fig. 2.

Schematic diagram of the right SMF mismatch connected to the right end of the PMF on (a) the slow axis and (b) the fast axis directions. (c) Initial interference spectra corresponding to the slow axis and fast axis polarization modes.

Fig. 3.
Fig. 3.

Spatial frequency spectra of the proposed sensor.

Fig. 4.
Fig. 4.

Visibility variation of the interference patterns as the axial displacement variation of the SMF2 along the right end of the PMF on (a) the slow axis and (b) the fast axis directions.

Fig. 5.
Fig. 5.

Fringe amplitude variation of the interference patterns for the two orthogonal polarization modes as a function of the axial displacement.

Fig. 6.
Fig. 6.

Temperature response of the proposed 2-D micrometric displacement sensor corresponding to (a) the slow axis polarization mode and (b) the fast axis polarization mode.

Fig. 7.
Fig. 7.

Intensity fluctuationa of the slow/fast axis polarization modes against the temperature variation at fixed displacements of z = 0 , 15, and 30 μm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φ m = 2 π Δ n eff m L / λ ,
I = I 1 + I 2 + 2 I 1 I 2 cos ( Φ m ) ,
Δ n eff , s m = n eff , s core n eff clad , Δ n eff , f m = n eff , f core n eff clad ,
λ s = 2 π ( n eff , s core n eff clad ) L 2 k + 1 , λ f = 2 π ( n eff , f core n eff clad ) L 2 k + 1 ,
K = 2 I 1 I 2 I 1 + I 2 .

Metrics