Abstract

This paper reveals an enhanced fluorescence in the hindwings of the male Troïdes magellanus, due to the confinement of fluorophores in a three-dimensional photonic structure. It is characterized by a spatial variation of the emission intensity and coloration. It also reveals the role of the structure on the emission and reflection complementary processes. We focus on the experimental analysis of these phenomena by means of a morphological study, a reflection characterization, and an emission characterization. Collecting and analyzing data over every emerging direction was important in this work. A theoretical approach is proposed to explain the experimental observations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
    [CrossRef]
  2. D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
    [CrossRef]
  3. P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
    [CrossRef]
  4. R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
    [CrossRef]
  5. J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
    [CrossRef]
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  7. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
    [CrossRef]
  8. P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005).
    [CrossRef]
  9. E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
    [CrossRef]
  10. T. Neubauer, “Butterflycorner—butterfly from all over the world,” http://en.butterflycorner.net .
  11. G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, eds., “The Global Lepidoptera Names Index (LepIndex),” http://www.nhm.ac.uk/entomology/lepindex .
  12. C. Lawrence, P. Vukusic, and R. Sambles, “Grazing-incidence iridescence from a butterfly wing,” Appl. Opt. 41, 437–441 (2002).
    [CrossRef]
  13. J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
    [CrossRef]
  14. R. T. Lee and G. S. Smith, “Detailed electromagnetic simulation for the structural color of butterfly wings,” Appl. Opt. 48, 4177–4190 (2009).
    [CrossRef]
  15. Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970).
    [CrossRef]
  16. S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991).
    [CrossRef]
  17. P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
    [CrossRef]
  18. Convention on International Trade in Endangered Species of wild fauna and flora (CITES), “Appendices I, II, and III,” http://www.cites.org/eng/app/Appendices-E.pdf .
  19. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [CrossRef]
  20. Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
    [CrossRef]
  21. M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).
  22. S. Berthier, Photonique des Morphos (Springer-Verlag, Berlin, 2010).
  23. J. L. Meyzonnette, “Notions de photométrie,” in Radiométrie et Détection Optique (EDP Sciences, 1992), pp. 3–92.
  24. O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010).
    [CrossRef]
  25. I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. B 79, 474–481 (1907).
    [CrossRef]

2011 (1)

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

2010 (4)

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
[CrossRef]

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010).
[CrossRef]

2009 (1)

2008 (3)

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

2005 (3)

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005).
[CrossRef]

2002 (1)

2000 (1)

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

1999 (1)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

1991 (1)

S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

1970 (1)

Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970).
[CrossRef]

1907 (1)

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. B 79, 474–481 (1907).
[CrossRef]

Andreani, L. C.

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

Baker, J. R.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Balint, Z.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Barthou, C.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

Behnecke, B.

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

Berthier, S.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

S. Berthier, Photonique des Morphos (Springer-Verlag, Berlin, 2010).

Biro, L. P.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Blasi, B.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Bollero, G.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Bouwmans, G.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Cho, C.-O.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Cho, J.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Choi, W. J.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Cunningham, B. T.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Dawson, J. M.

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

Deparis, O.

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010).
[CrossRef]

French-Constant, R. H.

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

Ganesh, N.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Gerace, M.

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Gonzalez, D. O.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Gutmann, J.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Hermle, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Homak, L. A.

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

Hooper, I.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005).
[CrossRef]

Im, J. S.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Jeon, H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

Jones, S. I.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Kertesz, K.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Kim, D.-H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Knight, J. C.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Koch, P. B.

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

Koltyar, A.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Lawrence, C.

Lee, R. T.

Lousse, V.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Luscidini, M.

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

Majoros, I.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Mathias, P. C.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Meyzonnette, J. L.

J. L. Meyzonnette, “Notions de photométrie,” in Radiométrie et Détection Optique (EDP Sciences, 1992), pp. 3–92.

Myaing, M. T.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Myers, T. H.

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

Norris, T. B.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Park, Q.-H.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Park, Y.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Park, Y. S.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Peters, M.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Rassart, M.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Roh, Y.-G.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Russell, P. S. J.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Sambles, R.

Saul, S. J.

S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991).
[CrossRef]

Siper, J. E.

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

Smith, G. S.

Sollas, I.

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. B 79, 474–481 (1907).
[CrossRef]

Sone, C.

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

Steidl, L.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Sugumaran, M.

S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991).
[CrossRef]

Thomas, T. P.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Tompkins, R. P.

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

Umebachi, Y.

Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970).
[CrossRef]

Van Hooijdonk, E.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

Vertesy, Z.

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Vigneron, J. P.

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010).
[CrossRef]

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Vodkin, L. O.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Vukusic, P.

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005).
[CrossRef]

C. Lawrence, P. Vukusic, and R. Sambles, “Grazing-incidence iridescence from a butterfly wing,” Appl. Opt. 41, 437–441 (2002).
[CrossRef]

Wadsworth, W. J.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Wang, G.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
[CrossRef]

Wang, X. H.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
[CrossRef]

Weigmann-Lenz, M.

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

Wu, H. Y.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yang, F.

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Ye, J. Y.

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Yoshida, K.

Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970).
[CrossRef]

Zentel, R.

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

Zhao, Y.

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
[CrossRef]

Anal. Chem. (1)

P. C. Mathias, S. I. Jones, H. Y. Wu, F. Yang, N. Ganesh, D. O. Gonzalez, G. Bollero, L. O. Vodkin, and B. T. Cunningham, “Improved sensitivity of DNA microarrays using photonic crystal enhanced fluorescence,” Anal. Chem. 82, 6854–6861 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D.-H. Kim, C.-O. Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett. 87, 203508 (2005).
[CrossRef]

FEBS Lett. (1)

S. J. Saul and M. Sugumaran, “Quinone methide as a reactive intermediate formed during the biosynthesis of papiliochrome-II, a yellow wing pigment of papilionid butterflies,” FEBS Lett. 279, 145–148 (1991).
[CrossRef]

J. Appl. Phys. (1)

Y. Zhao, G. Wang, and X. H. Wang, “Light emission properties of planar source in multilayer structures with photonic crystal patterns,” J. Appl. Phys. 108, 063103 (2010).
[CrossRef]

J. Insect Physiol. (1)

Y. Umebachi and K. Yoshida, “Some chemical and physical properties of papiliochrome II in the wings of Papilio xuthus,” J. Insect Physiol. 16, 1203–1228 (1970).
[CrossRef]

J. Nanophoton. (1)

E. Van Hooijdonk, C. Barthou, J. P. Vigneron, and S. Berthier, “Detailed experimental analysis of the structural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae),” J. Nanophoton. 05, 053525 (2011).
[CrossRef]

Mater. Sci. Eng., B (1)

O. Deparis and J. P. Vigneron, “Modeling the photonic response of biological nanostructures using the concept of stratified medium: the case of a natural three-dimensional photonic crystal,” Mater. Sci. Eng., B 169, 12–15 (2010).
[CrossRef]

Phys. Rev. B (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[CrossRef]

M. Luscidini, M. Gerace, L. C. Andreani, and J. E. Siper, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77, 1–11 (2008).

Phys. Rev. E (1)

J. P. Vigneron, K. Kertesz, Z. Vertesy, M. Rassart, V. Lousse, Z. Balint, and L. P. Biro, “Correlated diffraction and fluorescence in the backscattering iridescence of the male butterfly Troides magellanus (Papilionidae),” Phys. Rev. E 78, 021903 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

Pigment Cell Res. (1)

P. B. Koch, B. Behnecke, M. Weigmann-Lenz, and R. H. French-Constant, “Insect pigmentation: activities of β-alanyldopamine synthase in wing color patterns of wild-type and melanic mutant swallowtail butterfly Papilio glaucus,” Pigment Cell Res. 13, 54–58 (2000).
[CrossRef]

Proc. R. Soc. B (1)

I. Sollas, “On the identification of chitin by its physical constants,” Proc. R. Soc. B 79, 474–481 (1907).
[CrossRef]

Proc. SPIE (3)

J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Blasi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristic of the incorporated luminescent material: the ’Nano-Fluko’ concept,” Proc. SPIE 7725, 77250S (2010).
[CrossRef]

R. P. Tompkins, J. M. Dawson, L. A. Homak, and T. H. Myers, “Optofluidic photonic crystals for biomolecular fluorescence enhancement : a bottom-up approach for fabricating GaN-based biosensors,” Proc. SPIE 7056, 70560J (2008).
[CrossRef]

J. Y. Ye, M. T. Myaing, T. P. Thomas, I. Majoros, A. Koltyar, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, P. S. J. Russell, and T. B. Norris, “Development of a double-clad photonic-crystal-fiber based scanning microscope,” Proc. SPIE 5700, 23–27 (2005).
[CrossRef]

Science (1)

P. Vukusic and I. Hooper, “Directionally controlled fluorescence emission in butterflies,” Science 310, 1151 (2005).
[CrossRef]

Other (5)

T. Neubauer, “Butterflycorner—butterfly from all over the world,” http://en.butterflycorner.net .

G. W. Beccaloni, M. J. Scoble, G. S. Robinson, and B. Pitkin, eds., “The Global Lepidoptera Names Index (LepIndex),” http://www.nhm.ac.uk/entomology/lepindex .

Convention on International Trade in Endangered Species of wild fauna and flora (CITES), “Appendices I, II, and III,” http://www.cites.org/eng/app/Appendices-E.pdf .

S. Berthier, Photonique des Morphos (Springer-Verlag, Berlin, 2010).

J. L. Meyzonnette, “Notions de photométrie,” in Radiométrie et Détection Optique (EDP Sciences, 1992), pp. 3–92.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Photographs of the dorsal view of the male Troïdes magellanus [10]. (b) At grazing illumination and observation, a bright glint with blue-green hues is perceptible on the hindwings [10]. (c) Orientation of the hindwing in an axis system. The sample is placed in the xy plane, the z-axis being normal and the y-axis pointing from the termen to the base of the wing. The light propagation direction, represented by the red arrow, is defined by two angles: the polar angle θx and the azimuth angle φx. The index “x” is “i” in the case of the incident beam and “d” in the case of the detected beam.

Fig. 2.
Fig. 2.

(a) Schematic representation of the emission experimental setup. Two types of measurements are possible: excitation spectrum and emission mapping. (b) Emission spectrum performed at the normal to the sample under an excitation of 325 nm. In dark is represented the emitted energy, i.e., the area under the emission band. In light gray is represented the median wavelength, i.e., the wavelength separating the curve into two parts of an equivalent area.

Fig. 3.
Fig. 3.

Optical microscope view from the dorsal side of a hindwing fragment of the Troïdes magellanus (a) under a visible source and (b) under an ultraviolet source.

Fig. 4.
Fig. 4.

(a) SEM image of the top view of a ground scale of the Troïdes magellanus showing the ridges. They form a diffraction grating with a lattice parameter of 1.5 µm. Each ridge bears a set of lamellae. They form a multilayer with a smaller lattice parameter of 250 nm. (b) Cross section view of a scale fractured across a plane parallel to the xz plane and rotated 90°. The upper lamina is formed by crossribs [C] and ridges [R], each bearing the lamellae [*]. The section of the ridges is triangular. (c) Lateral view of a scale. The lower lamina [L] has no significant rumpling. The lamellae are tilted at about 60° relative to this one.

Fig. 5.
Fig. 5.

(a) BRDF map for the dorsal hindwing measured by a viewing angle instrument. The diagram represents the luminance (cd/m2) according to the detection angles θd and φd. The red star is the incident direction (θi=25°, φi=90°). The light is reflected in the direction of the dotted-dashed line, an axis perpendicular to the length of the ridges. (b) Schematic representation of the reflection process. In magenta is the incident beam, and in green are the main reflection spots.

Fig. 6.
Fig. 6.

(a) Emission spectra for (1) the membrane alone, (2) the membrane with the ventral scales, and (3) the membrane with the ventral and dorsal scales (i.e., the whole wing). The membrane presents a weak fluorescent signal in comparison to the dorsal and ventral scales’ signal. (b) Excitation spectrum carried out at λanalysis=535nm and emission spectrum performed with λexcitation=325nm. The boundaries of the emission band are noted λmin and λmax. 325 nm is the best compromise, giving a good fluorescent efficiency without disrupting the emission band.

Fig. 7.
Fig. 7.

(a) Diagram of the emitted energy with the detection angles θd and φd. The red star is the incident direction (θi=25°, φi=90°), the white disk is a nonsignificant area, and the dashed line is an axis parallel to the length of the ridges. The emitted energy is maximal in the direction (50°, 280°). Dividing each value of the emitted energy by the cosine of the polar angle θd gives a luminance value. (b) is the resulting diagram showing the variation of the luminance according to the detection angles θd and φd. A logarithmic representation was chosen. The emission is attenuated in a direction perpendicular to the length of the ridges. (c) Schematic representation of the emission process. In magenta is the incident beam, and in green are the main emission spots.

Fig. 8.
Fig. 8.

(a) Diagram of the median wavelength with the detection angles θd and φd. The red star is the incident direction (θi=25°, φi=90°), the white disk is a nonsignificant area, and the dashed line is an axis parallel to the length of the ridges. The map presents two mirror symmetries according to the x- and y-axes. (b) We select particular collection directions represented by the dashed arrow. We translate the corresponding emission spectra in the CIE 1931 chromaticity diagram. A variation of the emitted coloration from green (when the observation is normal to the sample) to turquoise (when the observation is grazing to the sample) is observed.

Fig. 9.
Fig. 9.

(a) Optical model of the ultrastructure found in the Troïdes magellanus. The lower lamina was modeled by a homogeneous slab (thickness: 1400 nm), whereas the corrugated wing surface was modeled by a central trunk decorated on both sides by homogeneous slabs of various sizes (the lamellae). The section of the ridges was triangular (base: 1500 nm, height: 4000 nm). (b) The polar and azimuth angle distribution of normalized emission (log. scale) for an idealized Troïdes-like structure containing an infinitely plane source. Dotted-circles indicate the area of important emission, i.e., at grazing emergence directions, globally parallel to the length of the ridges.

Metrics