Abstract

A cw, visible laser beam self-traps by initiating free-radical polymerization in an organosiloxane photopolymer doped with a well-characterized distribution of Ag nanoparticles. The self-trapped beam propagates over long distances (Rayleigh range) without diverging and permanently inscribes a cylindrical metallodielectric waveguide containing a dispersion of Ag nanoparticles. The self-trapped beam evolves from single-mode to multimode guidance over time; the effects of nanoparticle concentration on multimode dynamics were investigated. These findings open room temperature, soft polymer-based pathways where self-action effects including self-trapping and modulation instability can be exploited to spontaneously generate three-dimensional metallodielectric single or multiple cylindrical waveguides.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [CrossRef]
  2. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
    [CrossRef]
  3. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
    [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  5. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
    [CrossRef]
  6. L. M. Liz-Marzán, “Nanometals formation and color,” Mater. Today 7(2), 26–31 (2004).
    [CrossRef]
  7. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
    [CrossRef]
  8. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
    [CrossRef]
  9. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [CrossRef]
  10. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
    [CrossRef]
  11. E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
    [CrossRef]
  12. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
    [CrossRef]
  13. J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17, 13532–13540 (2009).
    [CrossRef]
  14. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [CrossRef]
  15. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
    [CrossRef]
  16. A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
    [CrossRef]
  17. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
    [CrossRef]
  18. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” J. Opt. Soc. Am. B 3, 1647–1655 (1986).
    [CrossRef]
  19. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Wittig, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18, 373–375 (1993).
    [CrossRef]
  20. A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
    [CrossRef]
  21. O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
    [CrossRef]
  22. L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
    [CrossRef]
  23. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
    [CrossRef]
  24. A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
    [CrossRef]
  25. K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
    [CrossRef]
  26. K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
    [CrossRef]
  27. A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).
  28. M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
    [CrossRef]
  29. B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
    [CrossRef]
  30. H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
    [CrossRef]
  31. M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
    [CrossRef]
  32. V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
    [CrossRef]
  33. W. Schärtl, “Crosslinked spherical nanoparticles with core-shell topology,” Adv. Mater. 12, 1899–1908 (2000).
    [CrossRef]
  34. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
    [CrossRef]
  35. C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002).
    [CrossRef]
  36. C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
    [CrossRef]
  37. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
    [CrossRef]
  38. Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
    [CrossRef]
  39. N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
    [CrossRef]
  40. A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  41. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [CrossRef]
  42. A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W-T. Han, “Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber,” Opt. Express 15, 6374–6379 (2007).
    [CrossRef]
  43. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
    [CrossRef]
  44. Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
    [CrossRef]
  45. M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
    [CrossRef]
  46. A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
    [CrossRef]
  47. A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
    [CrossRef]
  48. L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
    [CrossRef]
  49. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [CrossRef]
  50. S. Trillo and W. Torruellas, Spatial Solitons, 1st ed. (Springer, 2001).
  51. A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
    [CrossRef]
  52. T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
    [CrossRef]
  53. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
    [CrossRef]
  54. J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006).
    [CrossRef]
  55. J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009).
    [CrossRef]
  56. A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008).
    [CrossRef]
  57. J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, 1999).
  58. The effective beam diameter is the diameter of a circle with an area equal to the area of all pixels with an intensity above 13.5% (that is, 1/e2) of the measured beam peak intensity in the CCD camera. It represents the actual beam diameter only for beams with a Gaussian profile. For non-Gaussian profiles, the effective beam diameter recorded by the camera only indicates how wide the beam intensity spreads.
  59. The relative peak intensity is the ratio between the greatest intensity on one or more pixels in an image and the saturation intensity of the camera.
  60. J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, 2004).
  61. In order to obtain optical spectra of self-written waveguides, optical self-trapping was performed directly with the probing white light (400–740 nm). Spectra were collected after optical self-trapping had been successfully observed to make sure that the probing beam had been well confined within the formed waveguide. The setup for optical self-trapping with incoherent white light was described in [54].
  62. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
    [CrossRef]
  63. K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008).
    [CrossRef]
  64. I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
    [CrossRef]

2011

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[CrossRef]

J.-W. Liaw, J.-H. Chen, C.-S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17, 13532–13540 (2009).
[CrossRef]

2008

A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008).
[CrossRef]

I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

2007

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
[CrossRef]

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W-T. Han, “Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber,” Opt. Express 15, 6374–6379 (2007).
[CrossRef]

2006

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006).
[CrossRef]

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

2005

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
[CrossRef]

N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
[CrossRef]

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

2004

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

L. M. Liz-Marzán, “Nanometals formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

2002

C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002).
[CrossRef]

2001

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
[CrossRef]

T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
[CrossRef]

2000

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

W. Schärtl, “Crosslinked spherical nanoparticles with core-shell topology,” Adv. Mater. 12, 1899–1908 (2000).
[CrossRef]

1999

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
[CrossRef]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

1997

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[CrossRef]

1996

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
[CrossRef]

1995

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

1993

1992

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

1986

1985

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Ahn, I. H.

Akamatsu, K.

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

Allison, K. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Aoi, K.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

Astruc, D.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Baumann, F.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

Becker, K.

Blaaderen, A. V.

C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002).
[CrossRef]

Blanc, D.

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

Bockstaller, M.

M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
[CrossRef]

Boev, V. I.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

Bright, R. M.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Bronstein, L. M.

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Buck, J. A.

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, 2004).

Burgess, I. B.

I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
[CrossRef]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

Chen, C.-S.

Chen, J.-H.

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

Chernyshov, D. M.

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Choi, J.-M.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Chung, Y.

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Crooks, R. M.

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

Daniel, M.-C.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

Davis, J. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Dawn, A.

A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
[CrossRef]

De Sterke, C. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Dean, J. A.

J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, 1999).

Deki, S.

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

Deubzer, B.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

Duyne, R. P. V.

A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Ebenhoch, J.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Etchegoin, P. G.

E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

Flytzanis, C.

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

Franc, J.

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

Freeman, R. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Garcia-Martinez, J. C.

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

Giersig, M.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
[CrossRef]

Goettmann, F.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Gomes, M. D. J. M.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Grabar, K. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Graf, C.

C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002).
[CrossRef]

Guthrie, A. P.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Hache, F.

Hagan, D. J.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Haglund, R. F.

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Han, W.-T.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

Han, W-T.

Harsha, S. S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Hatakenaka, Y.

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

Heilmann, A.

M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
[CrossRef]

Hirata, T.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Hollmann, J.

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

Hommer, M. B.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Horimoto, N.

N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
[CrossRef]

Huber, K.

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

Hutchings, D. C.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Imae, T.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

Ishikawa, N.

N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
[CrossRef]

Jackson, M. A.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Ju, S.

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

Jung, J. C.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Kanehara, M.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Kasala, K.

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Keuker-Baumann, S.

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

Khaibullin, R. I.

A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).

Kiesow, A.

M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
[CrossRef]

Kim, B. H.

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Kolb, R.

M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
[CrossRef]

Kuo, M.-K.

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
[CrossRef]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Liaw, J.-W.

Lin, A.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W-T. Han, “Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber,” Opt. Express 15, 6374–6379 (2007).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Liu, G. L.

Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
[CrossRef]

Liu, H.

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Liu, S.

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Liu, X.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

Liz-Marzán, L. M.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

L. M. Liz-Marzán, “Nanometals formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
[CrossRef]

Lu, Y.

Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
[CrossRef]

Magruder, R. H.

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

Malenovska, M.

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

Manna, A.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

Martinez, S.

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Mitchell, D. J.

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Monro, T. M.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Moores, A.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Mukherjee, P.

A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Mulvaney, P.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
[CrossRef]

Nakajima, A.

N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
[CrossRef]

Nandi, A. K.

A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
[CrossRef]

Natan, M. J.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Neouze, M.-A.

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

Okada, M.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

Pastoriza-Santos, I.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

Peng, B.

Pérez-Juste, J.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

Poladian, L.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
[CrossRef]

T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996).
[CrossRef]

Ponte, M. R.

I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
[CrossRef]

Porel, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Qiu, L.

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

Quinten, M.

M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
[CrossRef]

Radhakrishnan, T. P.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Rao, D. N.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Rewari, A.

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

Ricard, D.

Roos, C.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

Ru, E. C. L.

E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Saravanamuttu, K.

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009).
[CrossRef]

I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008).
[CrossRef]

A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008).
[CrossRef]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

Schärtl, W.

W. Schärtl, “Crosslinked spherical nanoparticles with core-shell topology,” Adv. Mater. 12, 1899–1908 (2000).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schmidt, M.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

Schubert, U.

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

Scott, R. W. J.

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

Segev, M.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

Sheik-Bahae, M.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Silva, C. J. R.

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

Singh, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Smith, P. C.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Snyder, A. W.

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[CrossRef]

Sohn, B.-H.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Son, D. H.

Song, G. H.

Spontak, R. J.

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).

Stryland, E. W. V.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Sun, C.

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

Teranishi, T.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Thomas, E. L.

M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
[CrossRef]

Torruellas, W.

S. Trillo and W. Torruellas, Spatial Solitons, 1st ed. (Springer, 2001).

Trillo, S.

S. Trillo and W. Torruellas, Spatial Solitons, 1st ed. (Springer, 2001).

Tsuboi, N.

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

Valetsky, P. M.

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Villafranca, A. B.

A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Walter, D. G.

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

Wang, G. P.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

Wang, Y.

Watekar, P. R.

A. Lin, X. Liu, P. R. Watekar, W. Zhao, B. Peng, C. Sun, Y. Wang, and W.-T. Han, “All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals,” Opt. Lett. 34, 791–793 (2009).
[CrossRef]

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

Weis, J.

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

Wilder, E. A.

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Wilson, O. M.

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

Witte, T.

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

Wittig, J. E.

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Xie, J.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

Xu, H.

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Xu, J.

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Yang, L.

Yang, Y.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

Yogo, T.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

Yoo, S.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Yun, S.-H.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Zhang, J.

J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006).
[CrossRef]

Zhang, Q.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

Zhang, S.

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhao, W.

Zhu, Z.

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Zin, W-C.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

Zuhr, R. A.

Adv. Mater.

W. Schärtl, “Crosslinked spherical nanoparticles with core-shell topology,” Adv. Mater. 12, 1899–1908 (2000).
[CrossRef]

C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Adv. Mater. 11, 761–766 (1999).
[CrossRef]

M. Bockstaller, R. Kolb, and E. L. Thomas, “Metallodielectric photonic crystals based on diblock copolymers,” Adv. Mater. 13, 1783–1786 (2001).
[CrossRef]

Appl. Phys. B: Lasers Opt.

M. Quinten, A. Heilmann, and A. Kiesow, “Refined interpretation of optical extinction spectra of nanoparticles in plasma polymer films,” Appl. Phys. B: Lasers Opt. 68, 707–712 (1999).
[CrossRef]

Appl. Phys. Lett.

A. Lin, X. Liu, P. R. Watekar, Y. Chung, and W.-T. Han, “Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity,” Appl. Phys. Lett. 93, 021901(2008).
[CrossRef]

Y. Yang, G. P. Wang, J. Xie, and S. Zhang, “Metal nanoparticles-embedded three-dimensional microstructures created by single-beam holography,” Appl. Phys. Lett. 86, 173108 (2005).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett. 93, 051111 (2008).
[CrossRef]

Chem. Mater.

A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chem. Mater. 13, 1674–1681 (2001).
[CrossRef]

O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, “Separation of dendrimer-encapsulated Au and Ag nanoparticles by selective extraction,” Chem. Mater. 16, 4202–4204 (2004).
[CrossRef]

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Chem. Phys. Lett.

E. C. L. Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006).
[CrossRef]

N. Horimoto, N. Ishikawa, and A. Nakajima, “Preparation of a SERS substrate using vacuum-synthesized silver nanoparticles,” Chem. Phys. Lett. 413, 78–83 (2005).
[CrossRef]

Chem. Rev.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111, 3669–3712 (2011).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).
[CrossRef]

Eur. J. Inorg. Chem.

M. Malenovska, S. Martinez, M.-A. Neouze, and U. Schubert, “Growth of metal nanoparticles in a sol-gel silica thin film,” Eur. J. Inorg. Chem. 2007, 2609–2611 (2007).
[CrossRef]

J. Am. Chem. Soc.

B.-H. Sohn, J.-M. Choi, S. Yoo, S.-H. Yun, W-C. Zin, J. C. Jung, M. Kanehara, T. Hirata, and T. Teranishi, “Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles,” J. Am. Chem. Soc. 125, 6368–6369 (2003).
[CrossRef]

K. Huber, T. Witte, J. Hollmann, and S. Keuker-Baumann, “Controlled formation of Ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution,” J. Am. Chem. Soc. 129, 1089–1094 (2007).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006).
[CrossRef]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc. 128, 14913–14923 (2006).
[CrossRef]

J. Mater. Chem.

I. B. Burgess, M. R. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem. 18, 4133–4139 (2008).
[CrossRef]

L. Qiu, J. Franc, A. Rewari, D. Blanc, and K. Saravanamuttu, “Photolytic formation of Ag nanoparticles in oligomeric organosiloxanes: new photolithographic routes to metallodielectric microperiodic structures,” J. Mater. Chem. 19, 373–378(2009).
[CrossRef]

J. Mater. Sci. Mater. Electron.

J. Zhang and K. Saravanamuttu, “Nonlinear propagation of incoherent white light in a photopolymerizable medium: evidence of the co-existence and competition between spontaneous pattern formation and self-trapping,” J. Mater. Sci. Mater. Electron. 20, 380–384 (2009).
[CrossRef]

J. Mod. Opt.

T. M. Monro, C. M. De Sterke, and L. Poladian, “Topical review—catching light in its own trap,” J. Mod. Opt. 48, 191–238 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. Akamatsu, N. Tsuboi, Y. Hatakenaka, and S. Deki, “In situ spectroscopic and microscopic study on dispersion of Ag nanoparticles in polymer thin films,” J. Phys. Chem. B 104, 10168–10173 (2000).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

J. Phys. Chem. C

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111, 3806–3819 (2007).
[CrossRef]

A. B. Villafranca and K. Saravanamuttu, “An experimental study of the dynamics and temproal evolution of self-trapped laser beams in a photopolymerizable organosiloxane,” J. Phys. Chem. C 112, 17388–17396 (2008).
[CrossRef]

J. Raman Spectrosc.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

Langmuir

V. I. Boev, J. Pérez-Juste, I. Pastoriza-Santos, C. J. R. Silva, M. D. J. M. Gomes, and L. M. Liz-Marzán, “Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles,” Langmuir 20, 10268–10272 (2004).
[CrossRef]

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir 12, 4329–4335 (1996).
[CrossRef]

C. Graf and A. V. Blaaderen, “Metallodielectric colloidal core-shell particles for photonic applications,” Langmuir 18, 524–534 (2002).
[CrossRef]

A. Dawn, P. Mukherjee, and A. K. Nandi, “Preparation of size-controlled, highly populated, stable, and nearly monodispersed Ag nanoparticles in an organic medium from a simple interfacial redox process using a conducting polymer,” Langmuir 23, 5231–5237 (2007).
[CrossRef]

L. M. Bronstein, D. M. Chernyshov, P. M. Valetsky, E. A. Wilder, and R. J. Spontak, “Metal nanoparticles grown in the nanostructured matrix of poly(octadecylsiloxane),” Langmuir 16, 8221–8225 (2000).
[CrossRef]

Macromolecules

H. Xu, J. Xu, Z. Zhu, H. Liu, and S. Liu, “In-situ formation of silver nanoparticles with tunable spatial distribution at the poly(N-isopropylacrylamide) corona of unimolecular micelles,” Macromolecules 39, 8451–8455 (2006).
[CrossRef]

Mater. Today

L. M. Liz-Marzán, “Nanometals formation and color,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

Nano Lett.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007).
[CrossRef]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-abosorption-induced luminescence from gold nanoparticles,” Nano Lett. 5, 1139–1142(2005).
[CrossRef]

A. D. McFarland and R. P. V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Y. Lu, G. L. Liu, and L. P. Lee, “High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate,” Nano Lett. 5, 5–9 (2005).
[CrossRef]

Nat. Photon.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

New J. Chem.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” New J. Chem. 30, 1121–1132 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Kramers-Krönig relations in nonlinear optics,” Opt. Quantum Electron. 24, 1–30 (1992).
[CrossRef]

Phys. Rev. B

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Proc. SPIE

A. Lin, B. H. Kim, S. Ju, and W.-T. Han, “Fabrication and third-order nonlinearity of germano-silicate glass fiber incorporated with Au nanoparticles,” Proc. SPIE 6481, 64810M(2007).
[CrossRef]

Rev. Adv. Mater. Sci.

A. L. Stepanov and R. I. Khaibullin, “Optics of metal nanoparticles fabricated in organic matrix by ion implantation,” Rev. Adv. Mater. Sci. 7, 108–125 (2004).

Rev. Mod. Phys.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[CrossRef]

Science

R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-assembled metal colloid monolayers: an approach to SERS substrates,” Science 267, 1629–1632 (1995).
[CrossRef]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[CrossRef]

A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538–1541 (1997).
[CrossRef]

Other

S. Trillo and W. Torruellas, Spatial Solitons, 1st ed. (Springer, 2001).

J. A. Dean, Lange’s Handbook of Chemistry, 15th ed. (McGraw-Hill, 1999).

The effective beam diameter is the diameter of a circle with an area equal to the area of all pixels with an intensity above 13.5% (that is, 1/e2) of the measured beam peak intensity in the CCD camera. It represents the actual beam diameter only for beams with a Gaussian profile. For non-Gaussian profiles, the effective beam diameter recorded by the camera only indicates how wide the beam intensity spreads.

The relative peak intensity is the ratio between the greatest intensity on one or more pixels in an image and the saturation intensity of the camera.

J. A. Buck, Fundamentals of Optical Fibers, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, 2004).

In order to obtain optical spectra of self-written waveguides, optical self-trapping was performed directly with the probing white light (400–740 nm). Spectra were collected after optical self-trapping had been successfully observed to make sure that the probing beam had been well confined within the formed waveguide. The setup for optical self-trapping with incoherent white light was described in [54].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Absorption spectra of organosiloxane sol that was undoped (red curve) and doped with 5mM Ag(I) (4 mM AgNO3 and 0.7 mM AgCl) before (blue curve) and after (black curve) irradiation with white light (400–800  nm). (b) TEM of Ag nanoparticles in the sol and (c) histogram of their size distribution (population analyzed: 196 particles).

Fig. 2.
Fig. 2.

(a) 2D (top) and 3D (bottom) intensity profiles of a Gaussian laser beam (532 nm) at the exit face (z=6.0mm) of organosiloxane doped with Ag nanoparticles ([Ag(I)]=2mM); (b) plots of temporal relative peak intensity [59] (solid blue curves) and effective beam diameter [58] (dashed pink curves). Incident laser intensity=1.6×102W/cm2. (A neutral density filter with an optical density of 0.1 was placed before the CCD camera.)

Fig. 3.
Fig. 3.

(a) Temporal plots of relative peak intensity (solid blue curves) and effective beam diameter (dashed red curves) and corresponding evolution of 2D spatial intensity profiles of the beam at z=6.0mm within the time period of 0120s; (b) magnified images of the 2D spatial intensity profiles clearly showing the evolution of various modes during optical self-trapping. Laser incident intensity=1.6×102W/cm2; [Ag(I)]=2mM. (A neutral density filter with an optical density of 0.1 was placed before the CCD camera.)

Fig. 4.
Fig. 4.

Characterization of the self-induced metallodielectric waveguide. (a) An optical micrograph of the longitudinal cross section (z) showed the cylindrical waveguide with a diameter of 27±2μm propagating through the sample. Inset: An optical micrograph obtained in transmission mode at the exit face [(x,y) plane] of the waveguide showed that the microscope probe beam was confined within a core diameter of 30±1μm. (b) Visible light transmission spectra of the Ag-doped (blue) and undoped (pink) waveguides. (c) FIB etching into the waveguide core followed by SEM revealed a dispersion of Ag nanoparticles (encircled in dashed red). Inset: SEM showing the FIB etched region of the self-induced waveguide; the dashed red circle traces the circular profile of the waveguide, which is only faintly visible. (d) EDS confirmed that the bright features [encircled in dashed red in (c)] contained Ag content; no Ag content was detected in the surrounding area.

Fig. 5.
Fig. 5.

Temporal plots of relative peak intensity (%) (solid blue curves) and effective beam width (dashed red curves) and corresponding evolution of 2D spatial intensity profiles of the self-trapped beam at z=6.0mm in (a) organosiloxane ([Ag(I)]=0.0mM) and (b)–(d) Ag-doped organosiloxane ([Ag(I)]=0.8, 1, and 3 mM, respectively). Incident intensity=1.6×102W/cm2. (Neutral density filters with optical density=0.01, 0.035, 0.1, 1 were placed before the CCD camera for [Ag(I)]=0.0, 0.8, 1, and 3 mM, respectively.)

Tables (1)

Tables Icon

Table 1. Summary of the Maximum Self-Trapping Efficiency (Ratio between the Greatest Peak Intensity and the Initial Peak Intensity) and Corresponding Effective Beam Diameter at the Maximum Self-Trapping Efficiency in Samples with Different [Ag(I)]a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ik0n0Ez+122E+k02n0ΔnE+i2k0n0αE=0,

Metrics