Abstract

In this paper we present experimental results related to the dynamic switching of the emission wavelength of a passively mode-locked InAs/InGaAs quantum dot laser. The wavelength switching is achieved through application of varying optical feedback, as opposed to varying electrical biasing conditions, whereas the different regimes of operations include pulse operation either from the ground or the excited state and dual mode locking. Furthermore, through the same technique, Q-switching elimination was achieved, allowing stable pulse amplitude, which is a highly desired feature in many applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
    [CrossRef]
  2. O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
    [CrossRef]
  3. S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
    [CrossRef]
  4. W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
    [CrossRef]
  5. G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
    [CrossRef]
  6. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
    [CrossRef]
  7. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
    [CrossRef]
  8. M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
    [CrossRef]
  9. F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
    [CrossRef]
  10. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
    [CrossRef]
  11. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
    [CrossRef]
  12. J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
    [CrossRef]
  13. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
    [CrossRef]
  14. F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
    [CrossRef]
  15. B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
    [CrossRef]
  16. L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
    [CrossRef]
  17. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
    [CrossRef]
  18. D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).
  19. R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).
  20. Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).
  21. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
    [CrossRef]
  22. C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
    [CrossRef]
  23. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
    [CrossRef]
  24. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
    [CrossRef]
  25. M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
    [CrossRef]
  26. N. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18, 27028–27035 (2010).
    [CrossRef]
  27. E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
    [CrossRef]
  28. F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
    [CrossRef]
  29. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
    [CrossRef]
  30. C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
    [CrossRef]
  31. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).
  32. B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
    [CrossRef]
  33. X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
    [CrossRef]
  34. X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
    [CrossRef]
  35. J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
    [CrossRef]
  36. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
    [CrossRef]

2011

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

2010

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

N. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18, 27028–27035 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

2009

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

2008

E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
[CrossRef]

2007

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
[CrossRef]

2006

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

2005

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

2003

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

2002

S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
[CrossRef]

2001

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

2000

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

1999

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

1997

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

1983

J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

Accard, A.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Alferov, Z. I.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Arakawa, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Avrutin, E. A.

E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
[CrossRef]

Baek, J. S.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Bardella, P.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Barrios, P.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Bedarev, D. A.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Berg, T. W.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Bhattacharya, D.

S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Bimberg, D.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Bischoff, S.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Bismuto, A.

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

Buckley, S.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Carpintero, G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

Castellano, F.

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

Cataluna, M. A.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
[CrossRef]

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Chang, S. T.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Chen, P. S.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Chen, T. C.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Cheng, J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

Chong, L. Y.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

Chosh, S.

S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
[CrossRef]

Christodoulou, C. G.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

Crowley, M. T.

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Cun, Z. T.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Deppe, D. G.

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

Ding, Y.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Egorov, A. Y.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Faist, J.

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Gade, N.

J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

Ghosh, S.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Gin, A.

Grillot, F.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

N. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18, 27028–27035 (2010).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

Gu, W. Q.

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Guo, F. M.

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Han, D. D.

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Han, Z. X.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

Hatori, N.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Honninger, C.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Hsu, B. C.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Huang, X.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

Huffaker, D. L.

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

Ishida, M.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Ishikawa, H.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Jang, Y. D.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Jeong, W. G.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Jiao, Z.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Keller, U.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Kim, H.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Kim, J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Kim, J. H.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

Kim, N. J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Kopev, P. S.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Kovsh, A. R.

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Krakowski, M.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Krestnikov, I.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Kuo, P. S.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Kyoungsik, K.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Ledentsov, N. N.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Lee, D.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Lee, E. G.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Lee, H. S.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Lee, J. M.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Lelarge, F.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Lester, L. F.

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

N. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “Two-color multi-section quantum dot distributed feedback laser,” Opt. Express 18, 27028–27035 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Li, H.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Li, Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

Lin, C. Y.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

Liu, C. W.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Liu, G.

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Liu, G. T.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

Liu, J.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Liverini, V.

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

Livshits, D.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Livshits, D. A.

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

Lu, Z.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Magnusdottir, I.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Majumdar, A.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Maksimov, M. V.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Maleev, N. A.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Malloy, K. J.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Martinez, A.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Merghem, K.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Mesaritakis, C.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

Mikroulis, S.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

Mo, Q.

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

Montrosset, I.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Morier-Genoud, F.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Mork, J.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

Moser, M.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Mukai, Y.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Musikhin, Y. G.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Naderi, N.

Naderi, N. A.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

Nakata, K.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Nakata, Y.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Nevou, L.

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

Newell, T. C.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Nikitichev, D. I.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Norris, T. B.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Osmundsen, J.

J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

Otsubo, K.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Park, G.

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

Park, J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Paschotta, R.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

Pei, Z.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

Pelton, M.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Penty, R. V.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

Petroff, P.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Pochet, M.

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

Poitras, D.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Poole, P.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Pradhan, P.

S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
[CrossRef]

Pradhan, S.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Pyun, S. H.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Qi, C.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

Rafailov, E. U.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
[CrossRef]

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Raghunathan, R.

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

C. Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18, 21932–21937 (2010).
[CrossRef]

Ramdane, A.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Rice, A.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

Rivoire, K.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Robert, Y.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Roditi, E.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

Rosales, R.

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Rossetti, M.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Rui, W.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

Ruiz, M.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Russel, B. M.

E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
[CrossRef]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Shaji, Y.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Shchekin, O. B.

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

Sibbet, W.

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
[CrossRef]

Simos, C.

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

Simos, H.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

Singh, J.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Stintz, A.

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

Sugawara, N.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Sugiyama, M.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Suvorova, A. A.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Syvridis, D.

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18, 12832–12838 (2010).
[CrossRef]

Thompson, M. G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

Tran, M.

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

Tsatsulnikov, A. F.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Urayama, J.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Ustinov, V. M.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Volovik, B. V.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Vuckovic, J.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Weimert, J.

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

Werner, P.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

White, I. H.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

Wright, J. B.

Wrigth, J. B.

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

Xibin, S.

E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
[CrossRef]

Yamamoto, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Yang, K.

Yee, K. J.

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

Yokoyama, N.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

Yoou, S. F.

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

You, H.

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Zhang, X.

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Zhu, Z. Q.

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Zhukov, A. E.

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Zong-Kwei, W.

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

Appl. Phys. Lett.

Y. Shaji, K. Nakata, Y. Mukai, M. Sugiyama, N. Sugawara, N. Yokoyama, and H. Ishikawa, “Temperature dependent lasing characteristics of multi-stacked quantum dot lasers,” Appl. Phys. Lett. 71, 193 (1997).
[CrossRef]

S. Chosh, P. Pradhan, and D. Bhattacharya, “Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature,” Appl. Phys. Lett. 81, 3055 (2002).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. Petroff, and J. Vučković, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

J. Park, N. J. Kim, Y. D. Jang, E. G. Lee, J. M. Lee, J. S. Baek, J. H. Kim, H. S. Lee, K. J. Yee, D. Lee, S. H. Pyun, W. G. Jeong, and J. Kim, “Gain dynamics of an InAs/InGaAsP quantum dot semiconductor optical amplifier operating at 1.5 μm,” Appl. Phys. Lett. 98, 011107 (2011).
[CrossRef]

L. Nevou, V. Liverini, F. Castellano, A. Bismuto, and J. Faist, “Asymmetric heterostructure for photovoltaic InAs quantum dot infrared photodetector,” Appl. Phys. Lett. 97, 023505 (2010).
[CrossRef]

F. Grillot, N. A. Naderi, J. B. Wrigth, R. Raghunathan, M. T. Crowley, and L. F. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[CrossRef]

M. A. Cataluna, W. Sibbet, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[CrossRef]

F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser” Appl. Phys. Lett. 94, 153503 (2009).
[CrossRef]

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, “Rf linewidth reduction in a quantum dot passively mode-locked laser subject to external optical feedback,” Appl. Phys. Lett. 96, 051118 (2010).
[CrossRef]

C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, E. Roditi, I. Krestnikov, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97, 061114 (2010).
[CrossRef]

X. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode locking in a 1.3 μm two-section InAs quantum dot laser,” Appl. Phys. Lett. 78, 2825–2827 (2001).
[CrossRef]

Electron. Lett.

G. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well,” Electron. Lett. 35, 1163–1165 (1999).
[CrossRef]

IEEE Electron Device Lett.

B. C. Hsu, S. T. Chang, T. C. Chen, P. S. Kuo, P. S. Chen, Z. Pei, and C. W. Liu, “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Lett. 24, 318–320 (2003).
[CrossRef]

IEEE J. Quantum Electron.

X. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two-section 1.3 μm InAs quantum dot laser-absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37, 414–417 (2001).
[CrossRef]

J. Osmundsen and N. Gade, “Influence of optical feedback on laser frequency spectrum and threshold conditions,” IEEE J. Quantum Electron. 19, 465–469 (1983).
[CrossRef]

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, W. Zong-Kwei, J. Urayama, K. Kyoungsik, and T. B. Norris, “Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs─GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 39, 952–962 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13, 541–543 (2001).
[CrossRef]

W. Rui, S. F. Yoou, Z. X. Han, Z. T. Cun, L. Y. Chong, and C. Qi, “Temperature-dependent study on modal gain and differential gain of 1.3 μm InAs─GaAs QD lasers with different p-doping levels,” IEEE Photon. Technol. Lett. 22, 1045–1047 (2010).
[CrossRef]

O. B. Shchekin, G. Park, D. L. Huffaker, Q. Mo, and D. G. Deppe, “Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity,” IEEE Photon. Technol. Lett. 12, 1120–1122 (2000).
[CrossRef]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17, 1614–1616 (2005).
[CrossRef]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24 μm InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11, 931–933 (1999).
[CrossRef]

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10 GHz quantum-dot laser diode,” IEEE Photon. Technol. Lett. 21, 389–391 (2009).
[CrossRef]

IET Optoelectron.

C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “RF linewidth of a monolithic quantum dot mode-locked laser under resonant feedback,” IET Optoelectron. 5, 105–109 (2011).

J. Appl. Phys.

M. Sugawara, N. Hatori, H. Ebe, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Modeling room-temperature lasing spectra of 1.3 μm self-assembled InAs/GaAs quantum-dot lasers: homogeneous broadening of optical gain under current injection,” J. Appl. Phys. 97, 043523 (2005).
[CrossRef]

J. Opt. Soc. Am.

C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. 16, 46–56 (1999).
[CrossRef]

Nat. Photon.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photon. 1, 395 (2007).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

E. A. Avrutin, S. Xibin, and B. M. Russel, “Optical feedback tolerance of mode-locked laser diodes and some feedback reduction methods: a numerical investigation,” Opt. Quantum Electron. 40, 1175 (2008).
[CrossRef]

Phys. Rev. Lett.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502–1505 (2001).
[CrossRef]

Proc. SPIE

F. M. Guo, H. You, W. Q. Gu, D. D. Han, and Z. Q. Zhu, “Weak-light automatic readout collection and display on the resonant-cavity-enhanced quantum dot photoelectric sensor,” Proc. SPIE 8194, 81942X (2011).
[CrossRef]

Semiconductors

B. V. Volovik, A. F. Tsatsulnikov, D. A. Bedarev, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, N. N. Ledentsov, M. V. Maksimov, N. A. Maleev, Y. G. Musikhin, A. A. Suvorova, V. M. Ustinov, P. S. Kopev, Z. I. Alferov, D. Bimberg, and P. Werner, “Long wavelength emission in structures with quantum dots formed in the stimulated decomposition of a solid solution at strained islands,” Semiconductors 33, 901–905 (1999).
[CrossRef]

Other

D. I. Nikitichev, M. Ruiz, Y. Ding, M. Tran, Y. Robert, M. Krakowski, M. Rossetti, P. Bardella, I. Montrosset, I. Krestnikov, D. Livshits, M. A. Cataluna, and E. U. Rafailov, “Passively mode-locked monolithic two-section gain-guided tapered quantum-dot lasers: II. Record 15 Watt peak power generation,” The European Conference on Lasers and ElectroOptics (CLEO/Europe) Munich (Germany, 2011).

R. Rosales, K. Merghem, A. Martinez, A. Ramdane, A. Accard, and F. Lelarge, “High repetition rate two-section InAs/InP quantum-dash passively mode locked lasers,” IPRM 2011-23th International Conference on Indium Phosphide and Related Materials Berlin (Germany, 2011).

Z. Jiao, J. Liu, Z. Lu, P. Poole, P. Barrios, D. Poitras, and X. Zhang, “437 GHz optical pulse train generation from a C-Band InAs/InP quantum dot laser,” Optical Fiber Communication Conference (OFC) Los Angeles, (California, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic presentation of the experimental setup.

Fig. 2.
Fig. 2.

Optical power versus gain current for three cases. Dashed-black corresponds to Vabs = 0 V , dashed-dot-red to Vabs = 3 V , and solid-blue to Vabs = 4 V . Bistability for each state has been marked with a circle.

Fig. 3.
Fig. 3.

(a) Optical spectra versus gain current and reverse voltage for different level of optical feedback. (a) No feedback, (b) 33 dB , (c) 29 dB , and (d) 24 dB . Black areas correspond to subthreshold regimes, dark-gray to single GS emission, light-gray to dual state emission, and stripped-white to single ES emission.

Fig. 4.
Fig. 4.

(a) Pulse width (FWHM) versus gain current for different reverse voltage in the absence of optical feedback. (b) Autocorrelation trace alongside the Gaussian fit for I = 260 mA and Vabs = 4.5 V .

Fig. 5.
Fig. 5.

Electrical spectra for different level of feedback. (a) No feedback, (b) 33 dB , (c) 29 dB , (d) 26 dB , (e) 24 dB , and (f) 14 dB . The frequency span was set to 6 GHz, whereas resolution BW for all measurements was 3.5 MHz.

Fig. 6.
Fig. 6.

Time trace from the communication analyzer, for I = 380 mA Vabs = 4 V and no feedback applied to the laser.

Fig. 7.
Fig. 7.

Autocorrelation trace alongside the Gaussian fit, for I = 380 mA and Vabs = 4 V and feedback level of 24 dB .

Metrics