Abstract

The refractive index of most ion-doped materials increases with the excited state population. This effect was studied in many laser materials, particularly those doped with Cr3+ and rare earth ions, using several techniques, such as interferometry, wave mixing, and Z-scans. This refractive index variation is athermal (has an electronic origin) and is associated with the difference in the polarizabilites of the Cr3+ ion in its excited and ground states, Δαp. The Cr3+ optical transitions in the visible domain are electric-dipole forbidden, and they have low oscillator strengths. Therefore, the major contribution to Δαp has been assigned to allowed transitions to charge transfer bands (CTBs) in the UV with strengths 3 orders of magnitude higher. Although this CTB model qualitatively explains the main observations, it was never quantitatively tested. In order to further investigate the physical origin of Δαp in Cr3+-doped crystals, excited state absorption (ESA) and Z-scan measurements were thus performed in Cr:Al2O3 (ruby) and Cr:GSGG. Cr:GSGG was selected because of the proximity of its E2 and T24 emitting levels, and thus the possibility to explore the role of the spin selection rule in the ESA spectra and the resulting variations in polarizability by comparing low and room temperature data, which were never reported before. On the other hand, Cr:Al2O3 (ruby) was selected because it is the only crystal for which it is possible to obtain CTB absorption data from both ground and excited states, and thus for which it is possible to check the CTB model more accurately. Thanks to these more accurate and more complete data, we came to the first conclusion that the spin selection rule does not play any significant role in the variation of the polarizability with the E2T24 energy mismatch. We also discovered that using the CTB model in the case of ruby would lead to a negative Δαp value, which is contrary to all refractive index variation (including Z-scan) measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription