Abstract

The refractive index of most ion-doped materials increases with the excited state population. This effect was studied in many laser materials, particularly those doped with Cr3+ and rare earth ions, using several techniques, such as interferometry, wave mixing, and Z-scans. This refractive index variation is athermal (has an electronic origin) and is associated with the difference in the polarizabilites of the Cr3+ ion in its excited and ground states, Δαp. The Cr3+ optical transitions in the visible domain are electric-dipole forbidden, and they have low oscillator strengths. Therefore, the major contribution to Δαp has been assigned to allowed transitions to charge transfer bands (CTBs) in the UV with strengths 3 orders of magnitude higher. Although this CTB model qualitatively explains the main observations, it was never quantitatively tested. In order to further investigate the physical origin of Δαp in Cr3+-doped crystals, excited state absorption (ESA) and Z-scan measurements were thus performed in Cr:Al2O3 (ruby) and Cr:GSGG. Cr:GSGG was selected because of the proximity of its E2 and T24 emitting levels, and thus the possibility to explore the role of the spin selection rule in the ESA spectra and the resulting variations in polarizability by comparing low and room temperature data, which were never reported before. On the other hand, Cr:Al2O3 (ruby) was selected because it is the only crystal for which it is possible to obtain CTB absorption data from both ground and excited states, and thus for which it is possible to check the CTB model more accurately. Thanks to these more accurate and more complete data, we came to the first conclusion that the spin selection rule does not play any significant role in the variation of the polarizability with the E2T24 energy mismatch. We also discovered that using the CTB model in the case of ruby would lead to a negative Δαp value, which is contrary to all refractive index variation (including Z-scan) measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).
  2. H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).
  3. R. C. Powell and S. A. Payne, “Dispersion effects in 4-wave-mixing measurements of ions in solids,” Opt. Lett. 15, 1233–1235 (1990).
    [CrossRef]
  4. H. K. Lee and S. S. Lee, “Measurements of the anisotropic nonlinear refractive-index coefficients of ruby,” Opt. Lett. 15, 54–56 (1990).
    [CrossRef]
  5. D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
    [CrossRef]
  6. D. Pohl, “Inversion dependent frequency drifts in giant pulse ruby lasers,” Phys. Lett. A 26, 357–358 (1968).
    [CrossRef]
  7. S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902 (2007).
    [CrossRef]
  8. T. N. C. Venkatesan and S. L. Mccall, “Optical bistability and differential gain between 85 and 296K in a Fabry-Perot containing ruby,” Appl. Phys. Lett. 30, 282–284 (1977).
    [CrossRef]
  9. P. F. Liao and D. M. Bloom, “Continuous-wave backward-wave generation by degenerate 4-wave mixing in ruby,” Opt. Lett. 3, 4–6 (1978).
    [CrossRef]
  10. T. Catunda, J. P. Andreeta, and J. C. Castro, “Differential interferometric-technique for the measurement of the nonlinear index of refraction of ruby and GdAlO3:Cr3+,” Appl. Opt. 25, 2391–2395 (1986).
    [CrossRef]
  11. I. McMichael, P. Yeh, and P. Beckwith, “Nondegenerate 2-wave mixing in ruby,” Opt. Lett. 13, 500–502 (1988).
    [CrossRef]
  12. C. L. Adler and N. M. Lawandy, “Temperature and spectral dependence of the nonlinear index of ruby via nondegenerate 2-wave mixing,” Opt. Commun. 81, 33–37 (1991).
    [CrossRef]
  13. L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
    [CrossRef]
  14. S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27, 845–847 (2002).
    [CrossRef]
  15. V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
    [CrossRef]
  16. M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
    [CrossRef]
  17. S. C. Weaver and S. A. Payne, “Determination of excited-state polarizabilities of Cr3+ doped materials by degenerate 4-wave mixing,” Phys. Rev. B 40, 10727–10740 (1989).
    [CrossRef]
  18. R. C. Powell and S. A. Payne, “Dispersion effects in 4-wave-mixing measurements of ions in solids,” Opt. Lett. 15, 1233–1235 (1990).
    [CrossRef]
  19. L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
    [CrossRef]
  20. P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
    [CrossRef]
  21. R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
    [CrossRef]
  22. J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
    [CrossRef]
  23. Cronemeyer Dc, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703–1705 (1966).
    [CrossRef]
  24. D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
    [CrossRef]
  25. T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
    [CrossRef]
  26. S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).
  27. W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
    [CrossRef]
  28. T. Kushida, “Absorption and emission properties of optically pumped ruby,” IEEE J. Quantum Electron. 2, 524–531 (1966).
    [CrossRef]
  29. J. W. Huang and H. W. Moos, “Absorption spectrum of optically pumped Al2O3:Cr3+,” Phys. Rev. 173, 440–444(1968).
    [CrossRef]
  30. E. Loh, “Ultraviolet absorption and excitation spectrum of ruby and sapphire,” J. Chem. Phys. 44, 1940–1945 (1966).
    [CrossRef]
  31. H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
    [CrossRef]
  32. B. Di-Bartolo, Optical Interactions in Solids (Wiley, 1968).
  33. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
    [CrossRef]
  34. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium-doped and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–114(1986).
    [CrossRef]
  35. M. Sheikbahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
    [CrossRef]
  36. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
    [CrossRef]
  37. D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+ doped phosphate glass,” Opt. Lett. 32, 665–667 (2007).
    [CrossRef]
  38. L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-Scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994).
    [CrossRef]
  39. E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
    [CrossRef]
  40. H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
    [CrossRef]
  41. R. Soulard, R. Moncorge, A. Zinoviev, K. Petermann, O. Antipov, and A. Brignon, “Nonlinear spectroscopic properties of Yb3+ doped sesquioxides Lu2O3 and Sc2O3,” Opt. Express 18, 11173–11180 (2010).
    [CrossRef]

2011 (1)

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

2010 (1)

2008 (1)

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

2007 (2)

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+ doped phosphate glass,” Opt. Lett. 32, 665–667 (2007).
[CrossRef]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902 (2007).
[CrossRef]

2006 (2)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
[CrossRef]

2002 (1)

1999 (1)

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

1997 (1)

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
[CrossRef]

1996 (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
[CrossRef]

1994 (1)

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-Scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994).
[CrossRef]

1992 (1)

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

1991 (1)

C. L. Adler and N. M. Lawandy, “Temperature and spectral dependence of the nonlinear index of ruby via nondegenerate 2-wave mixing,” Opt. Commun. 81, 33–37 (1991).
[CrossRef]

1990 (4)

1989 (2)

M. Sheikbahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989).
[CrossRef]

S. C. Weaver and S. A. Payne, “Determination of excited-state polarizabilities of Cr3+ doped materials by degenerate 4-wave mixing,” Phys. Rev. B 40, 10727–10740 (1989).
[CrossRef]

1988 (1)

1986 (3)

1983 (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

1978 (1)

1977 (1)

T. N. C. Venkatesan and S. L. Mccall, “Optical bistability and differential gain between 85 and 296K in a Fabry-Perot containing ruby,” Appl. Phys. Lett. 30, 282–284 (1977).
[CrossRef]

1975 (1)

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
[CrossRef]

1970 (1)

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

1968 (2)

J. W. Huang and H. W. Moos, “Absorption spectrum of optically pumped Al2O3:Cr3+,” Phys. Rev. 173, 440–444(1968).
[CrossRef]

D. Pohl, “Inversion dependent frequency drifts in giant pulse ruby lasers,” Phys. Lett. A 26, 357–358 (1968).
[CrossRef]

1966 (4)

D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
[CrossRef]

E. Loh, “Ultraviolet absorption and excitation spectrum of ruby and sapphire,” J. Chem. Phys. 44, 1940–1945 (1966).
[CrossRef]

T. Kushida, “Absorption and emission properties of optically pumped ruby,” IEEE J. Quantum Electron. 2, 524–531 (1966).
[CrossRef]

Cronemeyer Dc, “Optical absorption characteristics of pink ruby,” J. Opt. Soc. Am. 56, 1703–1705 (1966).
[CrossRef]

1964 (1)

D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
[CrossRef]

1961 (1)

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Adler, C. L.

C. L. Adler and N. M. Lawandy, “Temperature and spectral dependence of the nonlinear index of ruby via nondegenerate 2-wave mixing,” Opt. Commun. 81, 33–37 (1991).
[CrossRef]

Ait-Ameur, K.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Andrade, A. A.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Andreeta, J. P.

Andrews, L. J.

L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
[CrossRef]

Antipov, O.

Antipov, O. L.

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Asawa, C. K.

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Baesso, M. L.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Barns, R. L.

D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
[CrossRef]

Beckwith, P.

Bloom, D. M.

Bradley, D. J.

D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
[CrossRef]

Brignon, A.

Cagniot, E.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Caird, J. A.

Castro, J. C.

Catunda, T.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902 (2007).
[CrossRef]

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+ doped phosphate glass,” Opt. Lett. 32, 665–667 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27, 845–847 (2002).
[CrossRef]

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
[CrossRef]

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
[CrossRef]

T. Catunda, J. P. Andreeta, and J. C. Castro, “Differential interferometric-technique for the measurement of the nonlinear index of refraction of ruby and GdAlO3:Cr3+,” Appl. Opt. 25, 2391–2395 (1986).
[CrossRef]

Dc, Cronemeyer

Dhaenens, I. J.

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Di-Bartolo, B.

B. Di-Bartolo, Optical Interactions in Solids (Wiley, 1968).

Dodd, D. M.

D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
[CrossRef]

Doualan, J. L.

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

Eichler, H. J.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Eilers, H.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Eremeykin, O. N.

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Evtuhov, V.

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Fairbank, W. M.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
[CrossRef]

Fromager, M.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Gabbe, D.

L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
[CrossRef]

Girard, S.

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

Godin, T.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Gunter, P.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Hitelman, S. M.

L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
[CrossRef]

Hoskins, R. H.

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Huang, J. W.

J. W. Huang and H. W. Moos, “Absorption spectrum of optically pumped Al2O3:Cr3+,” Phys. Rev. 173, 440–444(1968).
[CrossRef]

Huber, G.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Impinnisi, P. R.

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
[CrossRef]

Jacinto, C.

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Jiao, H.

Kamimura, H.

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Klauminzer, G. K.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

Kokta, M.

L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
[CrossRef]

Krupke, W. F.

Kushida, T.

T. Kushida, “Absorption and emission properties of optically pumped ruby,” IEEE J. Quantum Electron. 2, 524–531 (1966).
[CrossRef]

Laptev, V. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Lawandy, N. M.

C. L. Adler and N. M. Lawandy, “Temperature and spectral dependence of the nonlinear index of ruby via nondegenerate 2-wave mixing,” Opt. Commun. 81, 33–37 (1991).
[CrossRef]

Le Boulanger, P.

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

Lee, H. K.

Lee, S. S.

Liao, P. F.

Lima, S. M.

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids,” Opt. Lett. 27, 845–847 (2002).
[CrossRef]

Loh, E.

E. Loh, “Ultraviolet absorption and excitation spectrum of ruby and sapphire,” J. Chem. Phys. 44, 1940–1945 (1966).
[CrossRef]

Magyar, G.

D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
[CrossRef]

Maiman, T. H.

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Margerie, J.

J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

Marion, J. E.

Mccall, S. L.

T. N. C. Venkatesan and S. L. Mccall, “Optical bistability and differential gain between 85 and 296K in a Fabry-Perot containing ruby,” Appl. Phys. Lett. 30, 282–284 (1977).
[CrossRef]

McMichael, I.

Messias, D. N.

D. N. Messias, T. Catunda, J. D. Myers, and M. J. Myers, “Nonlinear electronic line shape determination in Yb3+ doped phosphate glass,” Opt. Lett. 32, 665–667 (2007).
[CrossRef]

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

Moncorge, R.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

R. Soulard, R. Moncorge, A. Zinoviev, K. Petermann, O. Antipov, and A. Brignon, “Nonlinear spectroscopic properties of Yb3+ doped sesquioxides Lu2O3 and Sc2O3,” Opt. Express 18, 11173–11180 (2010).
[CrossRef]

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

Moos, H. W.

J. W. Huang and H. W. Moos, “Absorption spectrum of optically pumped Al2O3:Cr3+,” Phys. Rev. 173, 440–444(1968).
[CrossRef]

Myers, J. D.

Myers, M. J.

Nagtegaele, P.

J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
[CrossRef]

Nunes, L. A. O.

Oliveira, L. C.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
[CrossRef]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-Scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994).
[CrossRef]

Payne, S. A.

Petermann, K.

Pilla, V.

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
[CrossRef]

Pohl, D.

D. Pohl, “Inversion dependent frequency drifts in giant pulse ruby lasers,” Phys. Lett. A 26, 357–358 (1968).
[CrossRef]

Pohl, D. W.

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

Powell, R. C.

Richardson, M. C.

D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
[CrossRef]

Said, A. A.

Schawlow, A. L.

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
[CrossRef]

Shcherbakov, I. A.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Sheikbahae, M.

Shinn, M. D.

Soulard, R.

Stokowski, S. E.

Strauss, E.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
[CrossRef]

Struve, B.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Sugano, S.

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Tanabe, Y.

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Tippins, H. H.

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

Traiche, M.

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

Van Stryland, E. W.

Venkatesan, T. N. C.

T. N. C. Venkatesan and S. L. Mccall, “Optical bistability and differential gain between 85 and 296K in a Fabry-Perot containing ruby,” Appl. Phys. Lett. 30, 282–284 (1977).
[CrossRef]

Weaver, S. C.

S. C. Weaver and S. A. Payne, “Determination of excited-state polarizabilities of Cr3+ doped materials by degenerate 4-wave mixing,” Phys. Rev. B 40, 10727–10740 (1989).
[CrossRef]

Wood, D. L.

D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
[CrossRef]

Yeh, P.

Yen, W. M.

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Zharikov, E. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Zilio, S. C.

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
[CrossRef]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-Scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994).
[CrossRef]

Zinoviev, A.

Appl. Opt. (1)

Appl. Phys. B (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw laser action in Cr3+:GdScGa-Garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Appl. Phys. Lett. (3)

V. Pilla, P. R. Impinnisi, and T. Catunda, “Measurement of saturation intensities in ion doped solids by transient nonlinear refraction,” Appl. Phys. Lett. 70, 817–819 (1997).
[CrossRef]

T. N. C. Venkatesan and S. L. Mccall, “Optical bistability and differential gain between 85 and 296K in a Fabry-Perot containing ruby,” Appl. Phys. Lett. 30, 282–284 (1977).
[CrossRef]

L. C. Oliveira and S. C. Zilio, “Single-beam time-resolved Z-Scan measurements of slow absorbers,” Appl. Phys. Lett. 65, 2121–2123 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Kushida, “Absorption and emission properties of optically pumped ruby,” IEEE J. Quantum Electron. 2, 524–531 (1966).
[CrossRef]

J. Appl. Phys. (1)

D. M. Dodd, D. L. Wood, and R. L. Barns, “Spectrophotometric determination of chromium concentration in ruby,” J. Appl. Phys. 35, 1183–1186 (1964).
[CrossRef]

J. Chem. Phys. (2)

L. J. Andrews, S. M. Hitelman, M. Kokta, and D. Gabbe, “Excited-state absorption of Cr3+ in K2NaScF6 and Gd3Ga2Ga3O12, Gd3Ga2Al3O12,” J. Chem. Phys. 84, 5229–5238 (1986).
[CrossRef]

E. Loh, “Ultraviolet absorption and excitation spectrum of ruby and sapphire,” J. Chem. Phys. 44, 1940–1945 (1966).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

L. C. Oliveira, T. Catunda, and S. C. Zilio, “Saturation effects in Z-scan measurements,”Jpn. J. Appl. Phys. 35, 2649–2652 (1996).
[CrossRef]

Nature (1)

D. J. Bradley, G. Magyar, and M. C. Richardson, “Intensity dependent frequency shift in ruby laser giant pulses,” Nature 212, 63–64 (1966).
[CrossRef]

Opt. Commun. (3)

M. Traiche, T. Godin, M. Fromager, R. Moncorge, T. Catunda, E. Cagniot, and K. Ait-Ameur, “Pseudo-nonlinear and athermal lensing effects on transverse properties of Cr3+ based solid-state lasers,” Opt. Commun. 284, 1975–1981 (2011).
[CrossRef]

C. L. Adler and N. M. Lawandy, “Temperature and spectral dependence of the nonlinear index of ruby via nondegenerate 2-wave mixing,” Opt. Commun. 81, 33–37 (1991).
[CrossRef]

R. Moncorge, O. N. Eremeykin, J. L. Doualan, and O. L. Antipov, “Origin of athermal refractive index changes observed in Yb3+ doped YAG and KGW,” Opt. Commun. 281, 2526–2530 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Phys. Lett. A (1)

D. Pohl, “Inversion dependent frequency drifts in giant pulse ruby lasers,” Phys. Lett. A 26, 357–358 (1968).
[CrossRef]

Phys. Rev. (2)

J. W. Huang and H. W. Moos, “Absorption spectrum of optically pumped Al2O3:Cr3+,” Phys. Rev. 173, 440–444(1968).
[CrossRef]

T. H. Maiman, R. H. Hoskins, I. J. Dhaenens, C. K. Asawa, and V. Evtuhov, “Stimulated optical emission in fluorescent solids. 2. spectroscopy and stimulated emission in ruby,” Phys. Rev. 123, 1151–1157 (1961).
[CrossRef]

Phys. Rev. B (7)

W. M. Fairbank, G. K. Klauminzer, and A. L. Schawlow, “Excited-state absorption in ruby, emerald, and Mgo double-bond Cr3+,” Phys. Rev. B 11, 60–76 (1975).
[CrossRef]

J. Margerie, R. Moncorge, and P. Nagtegaele, “Spectroscopic investigation of variations in the refractive index of a Nd : YAG laser crystal: experiments and crystal-field calculations,” Phys. Rev. B 74, 235108 (2006).
[CrossRef]

P. Le Boulanger, J. L. Doualan, S. Girard, J. Margerie, and R. Moncorge, “Excited-state absorption spectroscopy of Er3+-doped Y3Al5O12, YVO4, and phosphate glass,” Phys. Rev. B 60, 11380–11390 (1999).
[CrossRef]

H. H. Tippins, “Charge-transfer spectra of transition-metal ions in corundum,” Phys. Rev. B 1, 126–135 (1970).
[CrossRef]

S. C. Weaver and S. A. Payne, “Determination of excited-state polarizabilities of Cr3+ doped materials by degenerate 4-wave mixing,” Phys. Rev. B 40, 10727–10740 (1989).
[CrossRef]

E. Strauss, “Bulk and local elastic relaxation around optically-excited centers,” Phys. Rev. B 42, 1917–1921 (1990).
[CrossRef]

H. Eilers, E. Strauss, and W. M. Yen, “Photoelastic effect in Ti3+doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

S. M. Lima and T. Catunda, “Discrimination of resonant and nonresonant contributions to the nonlinear refraction spectroscopy of ion-doped solids,” Phys. Rev. Lett. 99, 243902 (2007).
[CrossRef]

Other (4)

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999).

H. J. Eichler, P. Gunter, and D. W. Pohl, Laser-Induced Dynamic Gratings (Springer-Verlag, 1986).

B. Di-Bartolo, Optical Interactions in Solids (Wiley, 1968).

S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

π-polarized GSA (αgsa), ESA (αesa), and absorption difference (Δα=αgsaαesa) spectra of 0.05 wt. % Cr2O3-doped ruby in the visible and near-UV spectral regions (as obtained with the double lock-in amplifier technique); all the absorption coefficients have been adjusted for a ground or excited state Cr3+ ion density of 1.6×1019cm3.

Fig. 2.
Fig. 2.

σ-polarized GSA (αgsa), excited-state absorption (αesa) and absorption difference (Δα=αgsaαesa) spectra of 0.05 wt. % Cr2O3-doped ruby in the visible and near-UV spectral regions (as obtained with the double lock-in amplifier technique); all the absorption coefficients have been adjusted for a ground or excited state Cr3+ ion density of 1.6×1019cm3.

Fig. 3.
Fig. 3.

UV ESA difference spectrum of ruby obtained after 570 nm excitation (by using a pump-probe technique with pulsed light sources). Unpolarized probe light.

Fig. 4.
Fig. 4.

Ground state absorption (αgsa) and absorption difference (Δα) spectra of Cr3+:GSGG in the visible and near-UV spectral regions (as obtained with the double lock-in amplifier technique) for two temperatures; all the absorption coefficients have been adjusted for a ground or excited state Cr3+ ion density of 8×1019cm3.

Fig. 5.
Fig. 5.

Z-scan results (normalized transmittance) obtained in ruby (sample 2) for laser power P=1.55mW at 543.5 nm and chopper frequency f=33Hz. The real part of n2 is obtained from the theoretical fit of the division curve S2/S1 (full circles).

Fig. 6.
Fig. 6.

Z-scan measurements with open aperture (S=1) in ruby (Nt=0.87×1019cm3). These curves indicate a behavior like saturable absorption for 515 nm, denoting σgsa>σesa and the opposite for 457 nm.

Fig. 7.
Fig. 7.

Cr3+:GSGG: transient measurement with the sample fixed at the peak of the Z-scan curve (T295K, λexc=457nm, Pexc=37mW). The theoretical fit by Eq. (10) results in τ=118μs, in agreement with the lifetime value.

Tables (1)

Tables Icon

Table 1. Z-Scan Data Obtained in Ruby Sample 2 and Comparison with ESA-Derived Values (Sample 1) (Ec)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

χ=χm+Ngαpg+Nexαpex,
n2-1n2+2=4π3(χm+Ntαpg+ΔαpNex),
Δn=2πn0NexfL2Δαp.
n2=NtIs(2πnofL2Δαpiλ4πΔσ).
αpg(ν¯)=e2mjfjg·1ν¯jg2-ν¯2e2mfg·1ν¯CT2-ν¯2,
αpex(ν¯)e2mfex.1(ν¯CT-ν¯ex)2-ν¯2,
Δαp(ν¯)=e2m[fex(ν¯CT-ν¯ex)2-ν¯2-fgν¯CT2ν¯2],
Δα=1lln(IuIp)=(σgsaσesa)Nex,
ΔασesaNex,
fg(ex)=1.13.1012.nofL2σgsa(esa)(ν¯)dν¯,
Nex=Nt(1et/τ)IIs.
Δαp=4.2·1025cm3,

Metrics