Abstract

We measure and model the spectral dependence of Faraday rotation in one-dimensional lattice structures composed of co-extruded alternating polymer layers of polymethylmethacrylate and polystyrene. We develop a theory that shows that the net Faraday rotation in a symmetric multilayer system is determined not by the total thickness of the constituent materials but by the time spent in each constituent material as measured by the overall group velocity delay of the structure and the relative energy distribution per material. We compare measured and computed Faraday rotation spectra for these films to theoretical predictions, taking into account ellipticity as well as layer thickness variations and finite spectral width detection. To measure rotations of these thin, non-magnetic, weak Faraday rotators, we constructed and optimized an apparatus capable of measuring broadband Faraday rotation spectra at 0.001° resolution for rotation angles as small as 0.002°.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).
  2. C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
    [CrossRef]
  3. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
    [CrossRef]
  4. T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
    [CrossRef]
  5. M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
    [CrossRef]
  6. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
    [CrossRef]
  7. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
    [CrossRef]
  8. A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
    [CrossRef]
  9. G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
    [CrossRef]
  10. E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.
  11. S. Fan, M. F. Yanik, Z. Wang, S. Sandhu, and M. L. Povinelli, “Advances in theory of photonic crystals,” J. Lightwave Technol. 24, 4493–4501 (2006).
    [CrossRef]
  12. H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
    [CrossRef]
  13. R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).
  14. V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
    [CrossRef]
  15. P. R. Camp and R. C. Raymond, “A Photoelectric polarimeter for measurement of transient rotations,” J. Opt. Soc. Am. 42, 237–240 (1952).
    [CrossRef]
  16. E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006).
    [CrossRef]
  17. S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
    [CrossRef]
  18. G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
    [CrossRef]
  19. P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
    [CrossRef]
  20. F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
    [CrossRef]
  21. M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).
  22. K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
    [CrossRef]
  23. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
    [CrossRef]
  24. M. J. Steel, M. Levy, and R. M. Osgood, “Large magnetooptical Kerr rotation with high reflectivity from photonic bandgap structures with defects,” J. Lightwave Technol. 18, 1289–1296 (2000).
    [CrossRef]
  25. M. J. Steel, M. Levy, and R. M. Osgood, “Photonic bandgaps with defects and the enhancement of Faraday rotation,” J. Lightwave Technol. 18, 1297–1308 (2000).
    [CrossRef]
  26. I. Abdulhalim, “Analytic propagation matrix method for anisotropic magneto-optic layered media,” J. Opt. A: Pure Appl. Opt. 2, 557–564 (2000).
  27. S. Visnovsky, K. Postava, and T. Yamaguchi, “Magneto-optic polar Kerr and Faraday effects in periodic multilayers,” Opt. Express 9, 158–171 (2001).
    [CrossRef]
  28. H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
    [CrossRef]
  29. H. Y. Ling, “Theoretical investigation of transmission through a Faraday-active Fabry-Perot etalon,” J. Opt. Soc. Am. A 11, 754–758 (1994).
    [CrossRef]
  30. M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
    [CrossRef]
  31. S. Sakaguchi and N. Sugimoto, “Transmission properties of multilayer films composed of magneto-optical and dielectric materials,” J. Lightwave Technol. 17, 1087–1092 (1999).
    [CrossRef]
  32. B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
    [CrossRef]
  33. M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photon. Technol. Lett. 12, 1171–1173 (2000).
    [CrossRef]
  34. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals,” J. Opt. Soc. Am. B 22, 286–292 (2005).
    [CrossRef]
  35. S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004).
    [CrossRef]
  36. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005).
    [CrossRef]
  37. T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).
  38. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
    [CrossRef]
  39. H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
    [CrossRef]
  40. Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
    [CrossRef]
  41. V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).
  42. See http://www.luminus.com .
  43. M. J. Weber, ed., Handbook of Optical Materials (CRC, 2003) p. 248.
  44. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
    [CrossRef]
  45. H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt. 47, 6497–6501 (2008).
    [CrossRef]
  46. K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996).
    [CrossRef]
  47. D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
    [CrossRef]
  48. P. Berman, “Optical Faraday rotation,” Am. J. Phys. 78, 270–276 (2010).
    [CrossRef]
  49. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
    [CrossRef]
  50. H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006).
    [CrossRef]
  51. The reason we do not think that density of states concepts are as useful here is that the connection between time and the density of states is only direct in one dimension, whereas Eq. (3) we are claiming is general. Furthermore, it is not clear how to apportion the density of states to each constituent material as implied by tA and tB.
  52. F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991).
    [CrossRef]
  53. P. C. W. Davies, “Quantum tunneling time,” Am. J. Phys. 73, 23–27 (2005).
    [CrossRef]
  54. A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995).
    [CrossRef]
  55. S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures, Series on Optical Science and Engineering (CRC, 2006).
  56. S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).
  57. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions,” Appl. Opt. 39, 2067–2070 (2000).
    [CrossRef]
  58. Cf. C. Koerdt, “Magneto-spatial dispersion phenomena: photonic band gaps and chirality in magneto-optics,” Ph.D. thesis (University of Konstanz, 2004) https://docs.google.com/viewer?url=http://www.ub.uni-konstanz.de/kops/volltexte/2004/1376/pdf/thesis-kops.pdf&pli=1 .
  59. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

2010 (2)

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

P. Berman, “Optical Faraday rotation,” Am. J. Phys. 78, 270–276 (2010).
[CrossRef]

2009 (5)

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

2008 (4)

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).

H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt. 47, 6497–6501 (2008).
[CrossRef]

2007 (1)

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

2006 (6)

S. Fan, M. F. Yanik, Z. Wang, S. Sandhu, and M. L. Povinelli, “Advances in theory of photonic crystals,” J. Lightwave Technol. 24, 4493–4501 (2006).
[CrossRef]

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006).
[CrossRef]

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006).
[CrossRef]

S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).

2005 (4)

P. C. W. Davies, “Quantum tunneling time,” Am. J. Phys. 73, 23–27 (2005).
[CrossRef]

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals,” J. Opt. Soc. Am. B 22, 286–292 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005).
[CrossRef]

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

2004 (1)

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004).
[CrossRef]

2003 (1)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

2001 (2)

S. Visnovsky, K. Postava, and T. Yamaguchi, “Magneto-optic polar Kerr and Faraday effects in periodic multilayers,” Opt. Express 9, 158–171 (2001).
[CrossRef]

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

2000 (5)

1999 (3)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

S. Sakaguchi and N. Sugimoto, “Transmission properties of multilayer films composed of magneto-optical and dielectric materials,” J. Lightwave Technol. 17, 1087–1092 (1999).
[CrossRef]

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

1998 (2)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

1997 (2)

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

1996 (1)

K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996).
[CrossRef]

1995 (3)

A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

1994 (1)

1993 (1)

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

1992 (1)

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

1991 (3)

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991).
[CrossRef]

P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176–1178 (1991).
[CrossRef]

1952 (1)

Abdulhalim, I.

I. Abdulhalim, “Analytic propagation matrix method for anisotropic magneto-optic layered media,” J. Opt. A: Pure Appl. Opt. 2, 557–564 (2000).

Abe, M.

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

Aktsipetrov, O.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Andrews, J.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Andrews, J. H.

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

Araoka, F.

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

Argyros, A.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Baer, E.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.

T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).

Barrera-Solano, C.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Barton, G. W.

Baryshev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

Beadie, G.

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Belotelov, V. I.

Benaissa, M.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Berman, P.

P. Berman, “Optical Faraday rotation,” Am. J. Phys. 78, 270–276 (2010).
[CrossRef]

Bernal-Lara, T. E.

T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).

Blanco, E.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Brommer, K. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Budker, D.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Bunch, R.

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Burt, T. M.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

Camp, P. R.

Capuzzo, M. A.

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Carlson, G.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Caudill, S. E.

S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).

Chen, C. X.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Cuevas, E.

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

Davies, P. C. W.

P. C. W. Davies, “Quantum tunneling time,” Am. J. Phys. 73, 23–27 (2005).
[CrossRef]

Day, G. W.

Deeter, M. N.

DeRege, P.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Dodabalapur, A.

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Domínguez, M.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

East, A. J.

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Ebeling, T.

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

Edrington, A. C.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Egawa, M.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Fan, S.

Fedyanin, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Feldmann, J.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Fetters, L. J.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Fin, Y.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Foerier, S.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

Fujikawa, R.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Gangopadhyay, P.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Garitaonandía, J. S.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Gasparian, V.

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Gmitter, T. J.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Gombert, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Gonsalves, K. E.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Granovsky, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005).
[CrossRef]

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004).
[CrossRef]

Grubbs, W. T.

S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).

Hadjichristidis, N.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Haugeneder, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Heim, K. R.

K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996).
[CrossRef]

Hilmer, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Hiltner, A.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.

T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).

Huang, W.

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

Hwang, E. H.

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006).
[CrossRef]

Inganas, O.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Inoue, M.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

Itoh, M.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Ivanov, C. D.

Joannopoulos, J. D.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Jose-Yacamá, M.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Kahl, S.

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004).
[CrossRef]

Kallinger, C.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Kato, H.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Katouf, R.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Kazmierczak, T.

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Kerns, J.

E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.

Khanarian, G.

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Khanikaev, A.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Khartsev, S. I.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005).
[CrossRef]

Kim, B. Y.

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006).
[CrossRef]

Kim, D. Y.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Koeckelberghs, G.

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

Koerdt, C.

Cf. C. Koerdt, “Magneto-spatial dispersion phenomena: photonic band gaps and chirality in magneto-optics,” Ph.D. thesis (University of Konstanz, 2004) https://docs.google.com/viewer?url=http://www.ub.uni-konstanz.de/kops/volltexte/2004/1376/pdf/thesis-kops.pdf&pli=1 .

Komikado, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Korley, L. T. J.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Kumar, J.

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

Laskowski, E. J.

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Lemmer, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Leon-Saval, S. G.

Lepkowicz, R.

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Levy, M.

Lim, P. B.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Ling, H. Y.

Litrán, R.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Lopez-Santiago, A.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Lott, J.

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Low, F. E.

F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991).
[CrossRef]

Lui, F.

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

Lui, S.

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

Matsushita, T.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Meade, R. D.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Meier, M.

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Mende, P. F.

F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991).
[CrossRef]

Milner, T. E.

Mortazavi, M. A.

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

Mueller, C. D.

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

Mullen, K.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Murzina, T.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Muto, S.

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

Nazarenko, S.

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

Nikolov, I. D.

Nishimura, K.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Norwood, R. A.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Ortega, D.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Ortuno, M.

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

Osgood, R. M.

Perner, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Persoons, A.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

Petschek, R.

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Peyghambarian, N.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Ponting, M.

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

Postava, K.

Povinelli, M. L.

Ramírez-del-Solar, M.

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

Ranade, A.

T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).

Rappe, A. M.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Raymond, R. C.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

Robijns, E.

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

Rochester, S. F.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Roger, A.

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

Rose, A. H.

Ruiz, J.

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

Sakaguchi, S.

Sandhu, S.

Scheinfein, M. R.

K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996).
[CrossRef]

Scherf, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Schuman, T. L.

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

Seki, N.

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

Singer, K.

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Singer, K. D.

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

Song, H.

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Spirkl, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Steel, M. J.

Steinberg, A. M.

A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995).
[CrossRef]

Sugimoto, N.

Suzuki, T.

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

Swager, T. M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Takayama, A.

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

Takezoe, H.

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

Thomas, E. L.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Thomas, J.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Tsukamoto, T.

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

Uchida, H.

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Umegaki, S.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Urbas, A. M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Valev, V. K.

V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).

Van Doorsselaere, K.

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

van Eijkelenborg, M. A.

Vangheluwe, M.

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

Verbiest, T.

V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

Visnovsky, S.

S. Visnovsky, K. Postava, and T. Yamaguchi, “Magneto-optic polar Kerr and Faraday effects in periodic multilayers,” Opt. Express 9, 158–171 (2001).
[CrossRef]

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures, Series on Optical Science and Engineering (CRC, 2006).

Voorakaranam, R.

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

Wang, Z.

Weder, C.

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Weiss, A.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Williams, P. A.

Winful, H. G.

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006).
[CrossRef]

Wittwer, V.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Wouters, J.

V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).

Wu, B.

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

Wu, Y.

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Y. Wu, K. Singer, R. Petschek, H. Song, E. Baer, and A. Hiltner, “Mode delocalization in 1D photonic crystal lasers,” Opt. Express 17, 18038–18043 (2009).
[CrossRef]

Xenidou, M.

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

Yablonovich, E.

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

Yamaguchi, T.

Yamamoto, T.

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

Yanik, M. F.

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Yatagai, T.

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).

Yu, H. C. Y.

Zhou, J.

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

Zvezdin, A. K.

Adv. Mater. (2)

A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fin, and E. L. Thomas, “Polymer-based photonic crystals,” Adv. Mater. 13, 421–425 (2001).
[CrossRef]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Mullen, A. Gombert, and V. Wittwer, “A flexible conjugated polymer laser,” Adv. Mater. 10, 920–923 (1998).
[CrossRef]

Am. J. Phys. (2)

P. Berman, “Optical Faraday rotation,” Am. J. Phys. 78, 270–276 (2010).
[CrossRef]

P. C. W. Davies, “Quantum tunneling time,” Am. J. Phys. 73, 23–27 (2005).
[CrossRef]

Ann. Phys. (1)

F. E. Low and P. F. Mende, “A note on the tunneling time problem,” Ann. Phys. 210, 380–387 (1991).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Express (1)

F. Araoka, M. Abe, T. Yamamoto, and H. Takezoe, “Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film,” Appl. Phys. Express 2, 011501–011503 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114–3116 (1995).
[CrossRef]

A. Roger, M. Meier, A. Dodabalapur, E. J. Laskowski, and M. A. Capuzzo, “Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on nonplanar substrates,” Appl. Phys. Lett. 74, 3257–3259 (1999).
[CrossRef]

G. Khanarian, M. A. Mortazavi, and A. J. East, “Phase-matched second-harmonic generation from free-standing periodically stacked polymer films,” Appl. Phys. Lett. 63, 1462–1464 (1993).
[CrossRef]

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84, 1438–1440 (2004).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504(2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, “High transmission enhanced Faraday rotation in one-dimensional photonic crystals with defects,” IEEE Photon. Technol. Lett. 12, 1171–1173 (2000).
[CrossRef]

Ind. Eng. Chem. Res. (1)

M. Ponting, T. M. Burt, L. T. J. Korley, J. Andrews, A. Hiltner, and E. Baer, “Gradient multilayer films by forced assembly coextrusion,” Ind. Eng. Chem. Res. 49, 12111–12118 (2010).
[CrossRef]

J. Appl. Phys. (3)

H. Kato, T. Matsushita, A. Takayama, M. Egawa, K. Nishimura, and M. Inoue, “Theoretical analysis of optical a magneto-optical properties of one-dimensional magnetophotonic crystals,” J. Appl. Phys. 93, 3906–3911 (2003).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, “Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers,” J. Appl. Phys. 83, 6768–6770 (1998).
[CrossRef]

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[CrossRef]

J. Appl. Polymer Science (1)

S. E. Caudill and W. T. Grubbs, “Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range,” J. Appl. Polymer Science 100, 65–72 (2006).

J. Euro. Phys. (1)

V. K. Valev, J. Wouters, and T. Verbiest, “Differential detection for measurements of Faraday rotation by means of ac magnetic fields,” J. Euro. Phys. 29, 1099–1104 (2008).

J. Lightwave Technol. (4)

J. Magn. Magn. Mater. (1)

K. R. Heim and M. R. Scheinfein, “An alternative approach for magneto-optic calculations involving layered media,” J. Magn. Magn. Mater. 154, 141–152 (1996).
[CrossRef]

J. Magnetism Magnetic Mat. (1)

M. Domínguez, D. Ortega, J. S. Garitaonandía, R. Litrán, C. Barrera-Solano, E. Blanco, and M. Ramírez-del-Solar, “Magneto-optic Faraday effect in maghemite nanoparticles/silica matrix nanocomposites prepared by the Sol–Gel method,” J. Magnetism Magnetic Mat. 320, e725–e729 (2008).

J. Mater. Chem. (2)

K. E. Gonsalves, G. Carlson, M. Benaissa, M. Jose-Yacamá, D. Y. Kim, and J. Kumar, “Magneto-optical properties of nanostructured iron,” J. Mater. Chem. 7, 703–704 (1997).
[CrossRef]

H. Song, K. D. Singer, J. Lott, J. Zhou, J. H. Andrews, E. Baer, A. Hiltner, and C. Weder, “Continuous melt processing of all-polymer distributed feedback lasers,” J. Mater. Chem. 19, 7520–7524 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

I. Abdulhalim, “Analytic propagation matrix method for anisotropic magneto-optic layered media,” J. Opt. A: Pure Appl. Opt. 2, 557–564 (2000).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

P. Gangopadhyay, R. Voorakaranam, A. Lopez-Santiago, S. Foerier, J. Thomas, R. A. Norwood, A. Persoons, and N. Peyghambarian, “Faraday rotation measurements on thin films of regioregular alkyl-substituted polythiophene derivatives,” J. Phys. Chem. C 112, 8032–8037 (2008).
[CrossRef]

J. Phys. D (1)

M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, “Magnetophotonic crystals,” J. Phys. D 39, R151–R161 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Muto, N. Seki, T. Suzuki, and T. Tsukamoto, “Plastic fiber optical isolator and current sensor,” Jpn. J. Appl. Phys. 31, L346–L348 (1992).
[CrossRef]

Macromol. Rapid Commun. (2)

G. Koeckelberghs, M. Vangheluwe, K. Van Doorsselaere, E. Robijns, A. Persoons, and T. Verbiest, “Regioregularity in Poly(3-alkoxythiophene)s: Effects on the Faraday rotation and polymerization mechanism,” Macromol. Rapid Commun. 27, 1920–1925 (2006).
[CrossRef]

T. Kazmierczak, H. Song, A. Hiltner, and E. Baer, “Polymeric one-dimensional photonic crystals by continuous coextrusion,” Macromol. Rapid Commun. 28, 2210–2216 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

E. H. Hwang and B. Y. Kim, “Pulsed high magnetic field sensor using polymethyl methacrylate,” Meas. Sci. Technol. 17, 2015–2021 (2006).
[CrossRef]

Opt. Express (2)

Optoelectron. Lett. (1)

B. Wu, F. Lui, S. Lui, and W. Huang, “Research on transmission spectra of one-dimensional magneto-photonic crystals,” Optoelectron. Lett. 5, 268–272 (2009).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

R. Katouf, T. Komikado, M. Itoh, T. Yatagai, and S. Umegaki, “Ultra-fast optical switches using 1D polymeric photonic crystals,” Photon. Nanostr. Fundam. Appl. 3, 116–119 (2005).

Phys. Rep. (1)

H. G. Winful, “Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox,” Phys. Rep. 436, 1–69 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
[CrossRef]

A. M. Steinberg, “How much time does a tunneling particle spend in the barrier region?” Phys. Rev. Lett. 74, 2405–2409 (1995).
[CrossRef]

V. Gasparian, M. Ortuno, J. Ruiz, and E. Cuevas, “Faraday rotation and complex-valued traversal time for classical light waves,” Phys. Rev. Lett. 75, 2312–2315 (1995).
[CrossRef]

Polym. Eng. Sci. (1)

C. D. Mueller, S. Nazarenko, T. Ebeling, T. L. Schuman, A. Hiltner, and E. Baer, “Novel structures by microlayer coextrusion,” Polym. Eng. Sci. 37, 355–362 (1997).
[CrossRef]

Proc. SPIE (1)

H. Song, K. Singer, Y. Wu, J. Zhou, J. Lott, J. Andrews, A. Hiltner, E. Baer, C. Weder, R. Bunch, R. Lepkowicz, and G. Beadie, “Layered polymeric optical systems using continuous coextrusion,” Proc. SPIE 7467, 74670A (2009).
[CrossRef]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. F. Rochester, V. V. Yashchuk, and A. Weiss, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74, 1153–1201 (2002).
[CrossRef]

Other (9)

T. E. Bernal-Lara, A. Ranade, A. Hiltner, and E. Baer, “Nano- and microlayered polymers: Structure and Properties,” in Mechanical Properties of Polymers Based on Nanostructure, 1st ed., G. H. Micheler and F. Balta-Callaja, eds. (CRC, 2005).

The reason we do not think that density of states concepts are as useful here is that the connection between time and the density of states is only direct in one dimension, whereas Eq. (3) we are claiming is general. Furthermore, it is not clear how to apportion the density of states to each constituent material as implied by tA and tB.

See http://www.luminus.com .

M. J. Weber, ed., Handbook of Optical Materials (CRC, 2003) p. 248.

S. Visnovsky, Optics in Magnetic Multilayers and Nanostructures, Series on Optical Science and Engineering (CRC, 2006).

Cf. C. Koerdt, “Magneto-spatial dispersion phenomena: photonic band gaps and chirality in magneto-optics,” Ph.D. thesis (University of Konstanz, 2004) https://docs.google.com/viewer?url=http://www.ub.uni-konstanz.de/kops/volltexte/2004/1376/pdf/thesis-kops.pdf&pli=1 .

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).

P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, 2005).

E. Baer, J. Kerns, and A. Hiltner, “Processing and properties of polymer microlayered systems,” in Structure Development During Polymer Processing, A. M. Cunha and S. Fakirov, eds. (Kluwer Academic, 2000), pp. 327–344.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) AFM image of a cross-section of a typical 32-layer PMMA/PS co-extruded film. (b) Layer thickness distribution for the film above determined by AFM analysis. The average thicknesses of the PMMA and PS layers in this case were found to be, respectively, 80 nm and 92 nm.

Fig. 2.
Fig. 2.

Schematic setup of our Faraday rotation experiment. LED: high-lumen green LED, L1: collimation lens, P1: thin film polarizer, BS: beam splitter, P2: thin film polarizer/analyzer mounted on rotary mount, M1 & M2: mirrors, Mono: monochromator, CCD: Ocean Optics CCD spectrometer.

Fig. 3.
Fig. 3.

Verdet constant spectral measurements for monoliths of PS (solid circles) and PMMA (open circles). The inset shows typical data from our intensity-to-frequency detectors during applied magnetic-field reversals.

Fig. 4.
Fig. 4.

Measured spectral transmission (solid squares) and effective Faraday rotation per Tesla (open circles) of the 128-layer PMMA/PS multilayer film as a function of the incident wavelength. Predicted constituent monolith values for equal thicknesses of PS and PMMA are also shown for reference.

Fig. 5.
Fig. 5.

Measured spectral transmission (solid squares) and effective Faraday rotation per Tesla (open circles) for a 64-layer folded ( PS / PMMA ) 16 ( PMMA / PS ) 16 multilayer film as a function of the incident wavelength.

Fig. 6.
Fig. 6.

(a), (b) Simulation of 128-layer film of PMMA/PS multilayer; (c),(d) simulation of a folded 64-layer film. Graphs (a) and (c) show the predicted transmission spectra from the multilayer stack. Graphs (b) and (d) show the predicted effective Verdet spectra using both the standard 4 × 4 matrix approach and the reduced Verdet, time-delay 2 × 2 transfer matrix approach described here. The bracketing lines show the predicted rotation from monoliths of PS (upper) and PMMA (lower) of the same thickness.

Fig. 7.
Fig. 7.

Simulation of 128 layer of PMMA/PS multilayer with layer thickness of 87 nm, but with a layer thickness variation of 10% and probed by light having a finite Gaussian spectrum width of from 3.5 to 4.5 nm. The solid line shows the predicted transmission spectrum and the dotted and dashed lines show the predicted Faraday rotations using the reduced Verdet, 2 × 2 transfer matrix approach, and the standard 4 × 4 matrix approach, respectively.

Fig. 8.
Fig. 8.

(a) Comparison between predicted Faraday rotation for a folded 64-layer structure considering ellipticity (solid line), without considering ellipticity (dashed line), and using our time-based Verdet model (dotted line). (b) Comparison between the predicted ellipticity angle for this folded 64-layer case (solid line) and the scaled difference between the 4 × 4 and 2 × 2 transfer matrix results shown in Fig. 6(d) (dotted line).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ F ( λ ) = 0 L V ( λ , z ) B ( z ) d z = V ( λ ) B L ,
θ F = 1 2 tan ( θ pol ) × I B -field forward I B -field backward I B -field forward + I B -field backward ,
θ F B = all layers V v g t D = ( V v g ) A t A + ( V v g ) B t B = υ ˜ A t A + υ ˜ B t B ,
θ F B = υ ˜ A t A + υ ˜ B t B = ( V v g ) A A layers ( n E ) 2 + ( V v g ) B B layers ( n E ) 2 All layers ( n E ) 2 t D .
M = ( cos δ i η sin δ i η sin δ cos δ ) ,
( E x H y E y H x ) ,
Re ( χ ) = tan θ ( 1 tan 2 ) 1 + tan 2 θ tan 2 , Im ( χ ) = tan ( 1 + tan 2 θ ) 1 + tan 2 θ tan 2 .
Farada y : θ F = 1 2 tan 1 ( 2 Re ( χ ) 1 | χ | 2 ) , Ellipticity : = 1 2 sin 1 ( 2 Im ( χ ) 1 + | χ | 2 ) .

Metrics