Abstract

The entangled states analysis is a very important element for quantum information. It is impossible to unambiguously distinguish the three-photon Greenberger–Horne–Zeilinger (GHZ) states in polarization, resorting to linear optical elements only. Here, we propose an efficient scheme to complete three-photon hyperentangled GHZ states analysis (HGSA) with the help of the cross-Kerr nonlinearity. The three-photon HGSA scheme can also be generalized to N-photon hyperentangled GHZ states analysis. We discuss the application of the HGSA in the quantum secure direct communication (QSDC) with polarization and spatial-mode degrees of freedom. The results show that the HGSA not only increase the channel capacity but also ensure the unconditional security in long-distance quantum communication.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription