Abstract

Annealing in appropriate atmosphere affects considerably transparency and photoluminescence (PL) of lithium thiogallate LiGaS2 (LGS). Intense absorption at 8.0 μm after annealing in vapors of Ga2S3 or S is related to SS vibrations. Annealing in vacuum produces intense blue PL in a 2.74 band, which transforms further to a 2.98 eV band: both emissions are excited in the same 3.4 eV band and are associated with two types of crystallographically nonequivalent anion vacancies (F-centers). The 2.98 eV emission of a more stable F-center decays exponentially with decay times τ=19μs and 218 ns at 80 and 300 K, respectively, and quenches to 650 K. PL in a 2.0 eV band, excited near the fundamental absorption edge, with a large Stokes shift and fast temperature quenching is related to recombination of the self-trapped excitons. LGS with F-centers can be used as a light-emitting medium in different laser and optoelectronic devices.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Dmitriev, G. G. Guzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).
  2. A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.
  3. J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.
  4. V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
    [CrossRef]
  5. L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
    [CrossRef]
  6. J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
    [CrossRef]
  7. L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
    [CrossRef]
  8. T. S. Moss, Optical Properties of Semiconductors (Butterworth, 1961).
  9. R. Alison, J. Burns, and A. J. Tuzzolino, “Absolute fluorescent quantum efficiency of sodium salicylate,” J. Opt. Soc. Am. 54, 747–750 (1964).
    [CrossRef]
  10. S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).
  11. L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
    [CrossRef]
  12. J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
    [CrossRef]
  13. G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” MRS Bull. 23, 28–36 (1998).
  14. V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
    [CrossRef]
  15. R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
    [CrossRef]
  16. L. Bonch-Bruevich and V. B. Glasko, “To theory of dislocations-related electronic transitions,” Sov. Phys. Solid State 3, 36–52 (1961).
  17. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  18. HSC chemistry software, http://www.chemistry-software.com .
  19. W. B. Fowler, ed., Physics of Color Centers (Academic, 1968), Chaps. 2 and 4.
  20. K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer, 1993).
  21. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).
  22. W. C. Ward and E. B. Hensleym, “Additive coloration of calcium oxide,” Phys. Rev. 175, 1230–1232 (1968).
    [CrossRef]
  23. B. D. Evans and J. C. Kemp, “Vibrational aspects of the CaO and MgO F bands,” Phys. Rev. B B2, 4179–4189 (1970).
    [CrossRef]
  24. A. M. Zaitsev, Optical Properties of Diamond: Data Handbook (Springer, 2001).

2010 (1)

2008 (1)

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

2004 (3)

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

2003 (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

2000 (1)

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

1998 (1)

G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” MRS Bull. 23, 28–36 (1998).

1996 (1)

R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
[CrossRef]

1990 (1)

J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
[CrossRef]

1970 (1)

B. D. Evans and J. C. Kemp, “Vibrational aspects of the CaO and MgO F bands,” Phys. Rev. B B2, 4179–4189 (1970).
[CrossRef]

1968 (1)

W. C. Ward and E. B. Hensleym, “Additive coloration of calcium oxide,” Phys. Rev. 175, 1230–1232 (1968).
[CrossRef]

1964 (1)

1961 (1)

L. Bonch-Bruevich and V. B. Glasko, “To theory of dislocations-related electronic transitions,” Sov. Phys. Solid State 3, 36–52 (1961).

Aarik, J.

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

Alison, R.

Bai, L.

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

Balachninaite, O.

Baumgartner, F. P.

R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
[CrossRef]

Bidault, O.

Bonch-Bruevich, L.

L. Bonch-Bruevich and V. B. Glasko, “To theory of dislocations-related electronic transitions,” Sov. Phys. Solid State 3, 36–52 (1961).

Bucher, E.

R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
[CrossRef]

Burlage, D.

G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” MRS Bull. 23, 28–36 (1998).

Burns, J.

Catella, G. C.

G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” MRS Bull. 23, 28–36 (1998).

Chen, C. T.

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

Chen, W.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Guzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Douillet, A.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Dovlidova, L.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Evans, B. D.

B. D. Evans and J. C. Kemp, “Vibrational aspects of the CaO and MgO F bands,” Phys. Rev. B B2, 4179–4189 (1970).
[CrossRef]

Fossier, S.

Foussier, S.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Glasko, V. B.

L. Bonch-Bruevich and V. B. Glasko, “To theory of dislocations-related electronic transitions,” Sov. Phys. Solid State 3, 36–52 (1961).

Guzadyan, G. G.

V. G. Dmitriev, G. G. Guzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Henderson, B.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

Henningsen, J.

Hensleym, E. B.

W. C. Ward and E. B. Hensleym, “Additive coloration of calcium oxide,” Phys. Rev. 175, 1230–1232 (1968).
[CrossRef]

Imbusch, G. F.

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

Isaenko, L.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Isaenko, L. I.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Kavun, I.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Kemp, J. C.

B. D. Evans and J. C. Kemp, “Vibrational aspects of the CaO and MgO F bands,” Phys. Rev. B B2, 4179–4189 (1970).
[CrossRef]

Kirm, M.

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

Kokorina, V. F.

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Kolker, D.

Krinitsin, P.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Kupecek, Ph.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Leal-Gonzalez, J.

J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
[CrossRef]

Lin, Z. S.

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

Lobanov, S.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Lobanov, S. I.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Malakhov, V.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Mandar, H.

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

Mangin, J.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Marchev, G.

Melibary, S. S.

J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
[CrossRef]

Minnerat, G.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Moss, T. S.

T. S. Moss, Optical Properties of Semiconductors (Butterworth, 1961).

Nigge, R.-M.

R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Guzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

Petrov, P.

Petrov, V.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Pung, L.

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

Rotermund, F.

Salaun, S.

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Sirutkaitis, V.

Slekys, G.

Smirnova, J.

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Smith, A. J.

J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
[CrossRef]

Song, K. S.

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer, 1993).

Thenot, I.

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Titov, A.

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

Tuzzolino, A. J.

Tyazhev, A.

Vasilyeva, I.

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

Vedenyapin, V.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

Wang, Z. Z.

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

Ward, W. C.

W. C. Ward and E. B. Hensleym, “Additive coloration of calcium oxide,” Phys. Rev. 175, 1230–1232 (1968).
[CrossRef]

Williams, R. T.

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer, 1993).

Yelisseyev, A.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Yelisseyev, A. P.

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

Zaitsev, A. M.

A. M. Zaitsev, Optical Properties of Diamond: Data Handbook (Springer, 2001).

Zondy, J.-J.

V. Petrov, J.-J. Zondy, O. Bidault, L. Isaenko, V. Vedenyapin, A. Yelisseyev, W. Chen, A. Tyazhev, S. Lobanov, G. Marchev, and D. Kolker, “Optical, thermal, electric, damage and phase-matching properties of lithium selenoindate,” J. Opt. Soc. Am. B 27, 1902–1927 (2010).
[CrossRef]

S. Fossier, S. Salaun, O. Bidault, I. Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, damage and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 1981–2007 (2004).

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Acta Crystallogr. C (1)

J. Leal-Gonzalez, S. S. Melibary, and A. J. Smith, “Structure of lithium gallium sulfide, LiGaS2,” Acta Crystallogr. C C46, 2017–2019 (1990).
[CrossRef]

Appl. Phys. B (1)

V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A. Titov, and J.-J. Zondy, “Second harmonic generation and optical parametric amplification in the mid-IR with orthorhombic biaxial crystals LiGaS2 and LiGaSe2,” Appl. Phys. B 78, 543–546(2004).
[CrossRef]

Cryst. Res. Technol. (1)

L. Isaenko, A. Yelisseyev, S. Lobanov, P. Krinitsin, V. Vedenyapin, and J. Smirnova, “Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear application in the mid-IR,” Cryst. Res. Technol. 38, 379–387 (2003).
[CrossRef]

J. Appl. Phys. (1)

L. Bai, Z. S. Lin, Z. Z. Wang, and C. T. Chen, “Mechanisms of linear and nonlinear effects of chalcopyrites LiGaX2 (X=S, Se and Te) crystals,” J. Appl. Phys. 103, 083111 (2008).
[CrossRef]

J. Cryst. Growth (1)

L. Isaenko, I. Vasilyeva, A. Yelisseyev, S. Lobanov, V. Malakhov, L. Dovlidova, J.-J. Zondy, and I. Kavun, “Growth and characterization of LiInS2 single crystals,” J. Cryst. Growth 218, 313–322 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

MRS Bull. (1)

G. C. Catella and D. Burlage, “Crystal growth and optical properties of AgGaS2 and AgGaSe2,” MRS Bull. 23, 28–36 (1998).

Phys. Rev. (1)

W. C. Ward and E. B. Hensleym, “Additive coloration of calcium oxide,” Phys. Rev. 175, 1230–1232 (1968).
[CrossRef]

Phys. Rev. B (1)

B. D. Evans and J. C. Kemp, “Vibrational aspects of the CaO and MgO F bands,” Phys. Rev. B B2, 4179–4189 (1970).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

R.-M. Nigge, F. P. Baumgartner, and E. Bucher, “CVT growth of AgGaSe2 single crystals: electrical and photoluminescence properties,” Sol. Energy Mater. Sol. Cells 43, 335–343(1996).
[CrossRef]

Sov. Phys. Solid State (1)

L. Bonch-Bruevich and V. B. Glasko, “To theory of dislocations-related electronic transitions,” Sov. Phys. Solid State 3, 36–52 (1961).

Thin Solid Films (1)

J. Aarik, H. Mandar, M. Kirm, and L. Pung, “Optical characterization of HfO2 thin films grown by atomic layer deposition,” Thin Solid Films 466, 41–47 (2004).
[CrossRef]

Other (10)

A. M. Zaitsev, Optical Properties of Diamond: Data Handbook (Springer, 2001).

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

HSC chemistry software, http://www.chemistry-software.com .

W. B. Fowler, ed., Physics of Color Centers (Academic, 1968), Chaps. 2 and 4.

K. S. Song and R. T. Williams, Self-Trapped Excitons (Springer, 1993).

B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, 1989).

T. S. Moss, Optical Properties of Semiconductors (Butterworth, 1961).

V. G. Dmitriev, G. G. Guzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1999).

A. P. Yelisseyev, L. I. Isaenko, S. I. Lobanov, J.-J. Zondy, A. Douillet, I. Thenot, Ph. Kupecek, G. Minnerat, J. Mangin, S. Foussier, and S. Salaun, “New ternary sulfide for double application in laser scheme,” in OSA TOPS Advanced Solid State Lasers, Vol. 34 of OSA Advanced Solid State Lasers, H. Injevan, U. Keller, and C. Marshall, eds. (Optical Society of America, 2000), pp. 561–568.

J.-J. Zondy, V. Petrov, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Orthorhombic crystals of lithium thioindated and selenoindate for nonlinear optics in the mid-IR,” in Mid-Infrared Coherent Sources and Applications, NATO Science for Peace and Security Series, B: Physics and Biophysics, M. Ebrahim-Zadeh and I. Sorokina, eds. (Springer, 2008), pp. 67–104.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Structure of LGS crystal of space group Pna21 with tetrahedrons: LiS4 (left) and GaS4 (right). Blue, green, and red balls correspond to Li, Ga, and S atoms, respectively.

Fig. 2.
Fig. 2.

Fragment of LiGaS2 structure with two sulfur sites: S1 and S2. The shortest bonds are marked by an asterisk.

Fig. 3.
Fig. 3.

Unpolarized Raman spectra for LGS at T=300K.

Fig. 4.
Fig. 4.

Transmission spectra of the 2 mm thick LGS samples recorded at room temperature after annealing in different environments: as-grown LGS (Curve 1), in vacuum (Curve 2), and in the presence of vapors of Li2S (Curve 3), Ga2S3 (Curve 4), and sulfur (Curve 5). Curve 6 shows the maximum possible transmission of LGS calculated supposing zero absorption and multiple reflections and using n=f(λ) from the Sellmeier equation in [8].

Fig. 5.
Fig. 5.

Fundamental absorption edge for a 60 μm thick plate cut from “as-grown” LGS sample, at 300 K (Curve 1) and 80 K (Curve 2). Bandgap values Eg are 3.93±0.01 and 4.03±1eV, respectively.

Fig. 6.
Fig. 6.

Absorption spectra at 300 K (Curve 1) and 80 K (Curves 2 and 3) for 2 mm thick plates cut from as-grown LGS (Curve 1) and from LGS annealed in vacuum (Curve 2) and in S vapor (Curve 3). Curve 4 is differential spectrum (Curves 2 and 3).

Fig. 7.
Fig. 7.

PL spectra for LGS, measured a. shortly after annealing in vacuum and b. in six months at 4.2 eV excitation (Curves 1 and 3) and 3.35 eV excitation (Curves 2 and 4). T=80K.

Fig. 8.
Fig. 8.

PL spectra for VS2 at 3.35 eV excitation, recorded at 80, 150, 200, 330, 450, and 550 K (Curves 1, 2, 3, 4, 5, and 6, respectively), in six months after annealing LGS in vacuum. Detail with two low-energy peaks is shown in the inset.

Fig. 9.
Fig. 9.

PLE spectra for PL bands at 1.92 eV (Curve 1), 2.92 (Curve 2), and 2.75 eV (Curve 3) at T=80K in LGS. Curve 4 is absorption spectrum for 60 μm thick LGS plate at 80 K . Arrow shows bandgap Eg=4.03eV at 80 K.

Fig. 10.
Fig. 10.

PLE spectra for PL band 2.98 eV (415 nm) in LGS, in six months after annealing in vacuum. Spectra were recorded at 80, 135, 175, 200, 240, 315, 490, 530, and 590 K (spectra 1, 2, 3, 4, 5, 6, 7, 8, and 9, respectively). (Inset) The experimental PLE spectrum for 2.98 eV PL at 80 K is shown by points, whereas the solid line spectra are a result of its decomposition into Gaussian components.

Fig. 11.
Fig. 11.

PL decay at 80 and 300 K (b, d) in LGS in six months after annealing in vacuum. PL was excited by the third harmonic of the Nd:YAG laser at 3.49eV/355nm (a, b) and by excimer laser at 3.99eV/308nm (c, d). PL was measured at 2.88 eV (a, b) and 2.25 eV (c, d). PL intensities are given in the logarithmic scale.

Fig. 12.
Fig. 12.

Temperature dependence for integral PL emission in 1.9 eV (a) and 2.986 eV (b) bands in LGS at 4.0 eV and 3.4 eV excitations, respectively. Experimental data are shown as points, whereas dotted curves correspond to calculation according to Eq. (3) with parameters ΔE=0.14eV, τRν0=4×103 (a) and ΔE=0.35eV, τRν0=1.7×104 (b). In the case of (a), the initial stage is determined by the exponential rise with ΔE10.02eV (activation barrier for exciton self-trapping).

Fig. 13.
Fig. 13.

Temperature dependence of the FWHM for 2.98 and 2.42 eV bands in PL spectra 1 and 2 and 3.38 eV band in PLE (Curve 3) in coordinates arccoth(H(T)/H(80K)) versus 1/T, in LGS, annealed in vacuum. The straight lines show the approximation according to Eq. (4) with the hω¯ parameters: 50 meV (400cm1), 39 meV (315cm1), and 32 meV(260cm1), respectively. At 80 K, the FWHM values are 0.22, 0.25, and 0.13 eV for Curves 1, 2, and 3, respectively.

Fig. 14.
Fig. 14.

Absorption spectra of LGS single crystals before (Curve 1) and after (Curve 2) irradiation with 3.5 MeV electrons. Spectra 2–7 show absorption spectra after annealing of irradiated LGS during 5 min at 100, 200, 300, 320, and 350 K, respectively. Individual components in the absorption spectrum of irradiated LGS are given in the inset. All spectra were recorded at T=80K.

Fig. 15.
Fig. 15.

Temperature dependence of absorption in individual components at 2.0 eV (Band A), 2.65 eV (Band B), and 3.5 eV (Band C) at isochronic annealing. Absorption was measured in the band maximum for Bands A and B and in the low-energy wing (at hν=3.0eV) for Band C.

Tables (2)

Tables Icon

Table 1. Distortions in LiC4, BC4 Tetrahedrons in LiBC2 Crystals

Tables Icon

Table 2. Bond Lengths in Tetrahedrons Li2Ga2, Containing S1 and S2

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R=(n1)2(n1)2,
T=1R2(1R)2.
N(cm3)=0.821×1017n(n2+2)21fijα(E)dE
N(cm3)=0.87×1017n(n2+2)21fij×αmaxγ,
η(T)11+τRν0exp(ΔEkT),
H2(T)=H(0)coth(hω¯2kT),

Metrics