Abstract

The placement of the beam focus corresponding with the center of living matter (such as cells) in an optical tweezer can result in photodamage. We advance a scheme here that locates the focus of the beam either above or below the matter to pull and push relative to the beam axis in a predominant lateral sense based on the resultant action of scattering and gradient forces. Switching to a laser that acts oppositely serves to restore the axial position of the matter. Although an exact value could not be derived due to the statistical nature of Brownian perturbations and time frame considerations, we simulated the optical force fields to visualize the effective force envelope. The lateral optical push–pull operation was conducted experimentally on polystyrene beads in which the motion manipulation efficacy was characterized.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hettner, “Zur Theorie der Photophorese,” Z. Phys. 37, 179–192 (1926).
    [CrossRef]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
    [CrossRef]
  3. T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E 81, 066315 (2010).
    [CrossRef]
  4. C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18, 2168–2182 (2010).
    [CrossRef]
  5. M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
    [CrossRef]
  6. T. W. Ng, A. Neild, and P. Heeraman, “Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling,” Opt. Lett. 33, 584–586 (2008).
    [CrossRef]
  7. A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
    [CrossRef]
  8. A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
    [CrossRef]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles.” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef]
  11. K. Dholakia, “An optical physicist sees the light,” Nature 457, 1061 (2009).
    [CrossRef]
  12. K. Konig, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21, 1090–1092 (1996).
    [CrossRef]
  13. H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
    [CrossRef]
  14. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
    [CrossRef]
  15. X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
    [CrossRef]
  16. M. Muradoglu, T. W. Ng, A. Neild, and I. Gralinski, “Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip,” J. Opt. Soc. Am. B 28, 602–607 (2011).
    [CrossRef]
  17. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
    [CrossRef]
  18. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [CrossRef]
  19. H. J. H. Clercx and P. P. J. M. Schram, “Brownian particles in shear flow and harmonic potentials: a study of long-time tails,” Phys. Rev. A 46, 1942–1950 (1992).
    [CrossRef]
  20. B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
    [CrossRef]
  21. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
    [CrossRef]
  22. M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
    [CrossRef]
  23. Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
    [CrossRef]
  24. A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
    [CrossRef]

2011 (1)

2010 (5)

C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18, 2168–2182 (2010).
[CrossRef]

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E 81, 066315 (2010).
[CrossRef]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
[CrossRef]

M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
[CrossRef]

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

2009 (1)

K. Dholakia, “An optical physicist sees the light,” Nature 457, 1061 (2009).
[CrossRef]

2008 (4)

T. W. Ng, A. Neild, and P. Heeraman, “Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling,” Opt. Lett. 33, 584–586 (2008).
[CrossRef]

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

2007 (4)

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
[CrossRef]

2000 (2)

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

1996 (1)

1992 (2)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

H. J. H. Clercx and P. P. J. M. Schram, “Brownian particles in shear flow and harmonic potentials: a study of long-time tails,” Phys. Rev. A 46, 1942–1950 (1992).
[CrossRef]

1986 (1)

1926 (1)

G. Hettner, “Zur Theorie der Photophorese,” Z. Phys. 37, 179–192 (1926).
[CrossRef]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles.” Opt. Lett. 11, 288–290 (1986).
[CrossRef]

Bauer, M.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

Bergenholtz, J.

M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
[CrossRef]

Berns, M. W.

Bhaduri, B.

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

Bjorkholm, J. E.

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Briels, W. J.

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

Choi, W.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Chu, S.

Clercx, H. J. H.

H. J. H. Clercx and P. P. J. M. Schram, “Brownian particles in shear flow and harmonic potentials: a study of long-time tails,” Phys. Rev. A 46, 1942–1950 (1992).
[CrossRef]

Dholakia, K.

K. Dholakia, “An optical physicist sees the light,” Nature 457, 1061 (2009).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

Diez-Silva, M.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Dziedzic, J. M.

Feld, M. S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Florin, E.-L.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Forró, L.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Gebert, A.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Gralinski, I.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

Gschwend, M. H.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Heeraman, P.

Hendinger, A.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Hettner, G.

G. Hettner, “Zur Theorie der Photophorese,” Z. Phys. 37, 179–192 (1926).
[CrossRef]

Horneffer, V.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Hüttmann, G.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Iwaki, T.

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E 81, 066315 (2010).
[CrossRef]

Jeney, S.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Karlssona, R.

M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
[CrossRef]

Knoner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Konig, K.

Kulik, A. J.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Li, W. K.

Liang, H.

Lin, L. Y.

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

Linz, N.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Liu, C. H.

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Lorenz, K.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Lu, Y.

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

Lukic, B.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Lykotrafitis, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Matsudaira, P.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

Miao, X.

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

Mir, M.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Mirsaidov, U.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Monjushiro, H.

M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
[CrossRef]

Muradoglu, M.

Nayeria, M.

M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
[CrossRef]

Neild, A.

M. Muradoglu, T. W. Ng, A. Neild, and I. Gralinski, “Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip,” J. Opt. Soc. Am. B 28, 602–607 (2011).
[CrossRef]

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
[CrossRef]

T. W. Ng, A. Neild, and P. Heeraman, “Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling,” Opt. Lett. 33, 584–586 (2008).
[CrossRef]

Ng, T. W.

M. Muradoglu, T. W. Ng, A. Neild, and I. Gralinski, “Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip,” J. Opt. Soc. Am. B 28, 602–607 (2011).
[CrossRef]

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
[CrossRef]

T. W. Ng, A. Neild, and P. Heeraman, “Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling,” Opt. Lett. 33, 584–586 (2008).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Padding, J. T.

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

Park, Y. K.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Popescu, G.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Sailer, R.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Schneckenburger, H.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Schram, P. P. J. M.

H. J. H. Clercx and P. P. J. M. Schram, “Brownian particles in shear flow and harmonic potentials: a study of long-time tails,” Phys. Rev. A 46, 1942–1950 (1992).
[CrossRef]

Schütze, K.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Siddiqi, A.

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
[CrossRef]

Soong, C. Y.

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

Strauss, W. S.

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

Suresh, S.

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Sviben, Ž.

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Tamagawa, M.

M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
[CrossRef]

Timp, G.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Timp, K.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Timp, W.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Tromberg, B. J.

Tzeng, P. Y.

Vogel, A.

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Watarai, H.

M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[CrossRef]

Colloids Surf. A (2)

M. Tamagawa, H. Monjushiro, and H. Watarai, “Microgravity laser-photophoresis of high density microparticles in water,” Colloids Surf. A 220, 279–284 (2003).
[CrossRef]

M. Nayeria, R. Karlssona, and J. Bergenholtz, “Surfactant effects on colloidal interactions: Concentrated micellar solutions of nonionic surfactant,” Colloids Surf. A 368, 84–90 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quantum Electron. 13, 1655–1662 (2007).
[CrossRef]

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841–856 (2000).
[CrossRef]

J. Biomed Opt. (2)

A. Siddiqi, T. W. Ng, and A. Neild, “Specific collection of adherent cells using laser release in a droplet-driven capillary cell,” J. Biomed Opt. 15, 065003 (2010).
[CrossRef]

H. Schneckenburger, A. Hendinger, R. Sailer, M. H. Gschwend, W. S. Strauss, M. Bauer, and K. Schütze, “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser,” J. Biomed Opt. 5, 40–44 (2000).
[CrossRef]

J. Opt. A (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Methods Cell Biol. (1)

A. Vogel, V. Horneffer, K. Lorenz, N. Linz, G. Hüttmann, and A. Gebert, “Principles of laser microdissection and catapulting of histologic specimens and live cells,” Methods Cell Biol. 82, 153–205 (2007).
[CrossRef]

Nat. Photon. (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[CrossRef]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef]

K. Dholakia, “An optical physicist sees the light,” Nature 457, 1061 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

H. J. H. Clercx and P. P. J. M. Schram, “Brownian particles in shear flow and harmonic potentials: a study of long-time tails,” Phys. Rev. A 46, 1942–1950 (1992).
[CrossRef]

Phys. Rev. E (4)

B. Lukić, S. Jeney, Ž. Sviben, A. J. Kulik, E.-L. Florin, and L. Forró, “Motion of a colloidal particle in an optical trap,” Phys. Rev. E 76, 011112 (2007).
[CrossRef]

T. Iwaki, “Effect of internal flow on the photophoresis of a micron-sized liquid droplet,” Phys. Rev. E 81, 066315 (2010).
[CrossRef]

A. Neild, J. T. Padding, Y. Lu, B. Bhaduri, W. J. Briels, and T. W. Ng, “Brownian diffusion transitions of carbon nanofibers under wall interaction,” Phys. Rev. E 82, 041126 (2010).
[CrossRef]

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Y. K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. USA 105, 13730–13735 (2008).
[CrossRef]

Z. Phys. (1)

G. Hettner, “Zur Theorie der Photophorese,” Z. Phys. 37, 179–192 (1926).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (9142 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Geometry of an incident ray giving rise to scattering F s and gradient F g forces and (b) the forces when sphere is located at regions below and above the focus.

Fig. 2.
Fig. 2.

Proposed scheme where locating the beam focus below or above the sphere (state A) moves it laterally predominantly while a beam in the opposite direction (state B) restores the sphere axially.

Fig. 3.
Fig. 3.

Schematic description of the optical push–pull setup used. BS, beam splitter; M mirror.

Fig. 4.
Fig. 4.

Contour plots of the optical force efficiency on a 3 μm polystyrene particle shown separated into its (a)  y component Q y and (b)  z component Q z , within the central trapping region. The results indicate the well-known equilibrium point located slightly above the focal point.

Fig. 5.
Fig. 5.

Contour plots of the optical force efficiency on a 3 μm polystyrene particle shown separated into its (a)  y component Q y and (b)  z component Q z , at points 4 to 16 μm above the focal point. The transition line (green line) in (a) indicates the boundary where the optical forces switch polarity, i.e., from pulling to pushing. (c)  y component Q y for the region near the transition line.

Fig. 6.
Fig. 6.

Plots of distance to transition line, z T , versus particle refractive index. Each line corresponds to a different particle size.

Fig. 7.
Fig. 7.

Contour plots of the optical force efficiency on a 3 µm polystyrene particle shown separated into its (a)  y component Q y and (b)  z component Q z , at points 4 to 13 μm below the focal point.

Fig. 8.
Fig. 8.

Images of laser beam focus located axially (a) above and (b) below particles. The former pulls and the latter pushes particles laterally with respect to the beam axis (cursor). (Media 1)

Fig. 9.
Fig. 9.

Plots of lateral distances where sphere movement were first detected against axial distances of beam focus relative to sphere center at different optical powers (percent of maximum). The axes units are in micrometers.

Metrics