Abstract

An alternative structure using third-order Raman amplification based on ultralong fiber lasers (UL-FLs) is investigated numerically to further improve the quasi-lossless transmission performance. The performance comparisons on flatness of signal distribution, optical signal–noise ratio (OSNR), and noise figure (NF) among first-order, second-order, and third-order Raman pumping based on UL-FLs are discussed numerically. The results display that the gain distribution is pushed more uniformly along UL-FLs using third-order Raman pumping, which is very useful to further extend the quasi-lossless midspan distance. For transparency transmission, enhanced quasi-lossless transmission could be achieved without sacrifice to OSNR and NF. We also analyze the transmission dynamics of loss-managed fundamental solitons for different pumping configurations. The amplifier span and transmission quality are improved considerably, even for lower dispersion lengths, by employing the proposed scheme.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
    [CrossRef]
  2. G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
    [CrossRef]
  3. C. Rasmusssen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over transpacific distance (10000 km) using CSRZ-DPSK, enhanced FEC, and all Raman amplified 100 km ultrawave fiber spans,” J. Lightwave Technol. 22, 203–207 (2004).
    [CrossRef]
  4. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  5. V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.
  6. J. D. Ania-Castanon, “Quasi-lossless transmission using second-order Raman amplification and fiber Bragg gratings,” Opt. Express 12, 4372–4377 (2004).
    [CrossRef]
  7. Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
    [CrossRef]
  8. Z. Liao and G. P. Agrawal, “Role of distributed amplification in designing high-capacity soliton systems,” Opt. Express 9, 66–71 (2001).
    [CrossRef]
  9. M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009).
    [CrossRef]
  10. T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
    [CrossRef]
  11. J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.
  12. D. A. Chestnut, C. J. S. de Matos, P. C. Reeves-Hall, and J. R. Taylor, “Copropagating and counterpropagating pumps in second-order- pumped discrete fiber Raman amplifiers,” Opt. Lett. 27, 1708–1710 (2002).
    [CrossRef]
  13. J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
    [CrossRef]
  14. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
    [CrossRef]
  15. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
    [CrossRef]
  16. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
    [CrossRef]
  17. Y. J. Rao, X. H. Jia, L. Li, and Z. L. Ran, “Detailed investigation on gain-clamping characteristics of ultralong fiber Raman laser using FBGs,” J. Opt. Soc. Am. B 26, 1334–1340 (2009).
    [CrossRef]
  18. V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002).
    [CrossRef]
  19. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
    [CrossRef]
  20. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
    [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

2010 (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

2009 (3)

2008 (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

2007 (2)

2006 (2)

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

2004 (2)

2003 (1)

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

2002 (3)

2001 (2)

Z. Liao and G. P. Agrawal, “Role of distributed amplification in designing high-capacity soliton systems,” Opt. Express 9, 66–71 (2001).
[CrossRef]

T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
[CrossRef]

Agrawal, G. P.

Z. Liao and G. P. Agrawal, “Role of distributed amplification in designing high-capacity soliton systems,” Opt. Express 9, 66–71 (2001).
[CrossRef]

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Akasaka, Y.

Alcon-Camas, M.

Ania-Castanon, J. D.

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

J. D. Ania-Castanon, “Quasi-lossless transmission using second-order Raman amplification and fiber Bragg gratings,” Opt. Express 12, 4372–4377 (2004).
[CrossRef]

Ania-Castañón, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

Bennike, J.

Bennion, I.

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Bouteiller, J.-C.

J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.

Brar, K.

J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.

Chen, X.

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

Chestnut, D. A.

Churkin, D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

Dang, N. N.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

de Matos, C. J. S.

Dey, S.

Ellingham, T. J.

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Ellingham, Tim J.

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009).
[CrossRef]

Fjelde, T.

Gapontsev, D.

Gupta, G. C.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

Harris, D.

Harrison, J. A.

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.

Ibbotson, R.

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

Ivshin, V.

Jia, X. H.

Judy, A.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

M. Alcon-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34, 3104–3106 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

Li, L.

Liao, Z.

Liu, F.

Mamyshev, P.

Mezentsev, V. K.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

Mikkelsen, B.

Mizuhara, O.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Nishimura, M.

T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
[CrossRef]

Okuno, T.

T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
[CrossRef]

Perlin, V. E.

V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002).
[CrossRef]

V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Rasmusssen, C.

Reeves-Hall, P.

Reeves-Hall, P. C.

Serbe, P.

Tabaddor, P.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Taylor, J. R.

Tench, R. E.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Tsuzaki, T.

T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
[CrossRef]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32, 1135–1137 (2007).
[CrossRef]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15, 16690–16695 (2007).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

van der Wagt, P.

Wang, H.

Wang, L. L.

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Winful, H. G.

V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002).
[CrossRef]

V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.

Zhang, L.

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. C. Gupta, L. L. Wang, O. Mizuhara, R. E. Tench, N. N. Dang, P. Tabaddor, and A. Judy, “3.2  Tb/s transmission with spectral efficiency of 0.8  b/s/Hz over 21×100  km of dispersion-managed high local dispersion fiber using all Raman amplified spans,” IEEE Photon. Technol. Lett. 15, 996–998 (2003).
[CrossRef]

Tim J. Ellingham, J. D. Ania-Castañón, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Quasi-lossless optical links for broad-band transmission and data processing,” IEEE Photon. Technol. Lett. 18, 268–270 (2006).
[CrossRef]

T. Okuno, T. Tsuzaki, and M. Nishimura, “Novel optical hybrid line configuration for quasi-lossless transmission by distributed Raman amplification,” IEEE Photon. Technol. Lett. 13, 806–808 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser, ” Nat. Photon. 4, 231–235 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers, ” Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270 km ultralong Raman fiber laser,” Phys. Rev. Lett. 103, 133901 (2009).
[CrossRef]

J. D. Ania-Castanon, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and I. Bennion, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96, 023902 (2006).
[CrossRef]

Other (4)

J.-C. Bouteiller, K. Brar, and C. Headley, “Quasi-constant signal power transmission,” in 28th European Conference on Optical Communication, 2002 (IEEE, 2002), Vol. 3, pp. 1–2.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

V. E. Perlin and H. G. Winful, “On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification,” in Proceedings of Optical Fiber Communications Conference, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper WB1.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of quasi-lossless transmission using third-order Raman amplification based on a UL-FL.

Fig. 2.
Fig. 2.

(a) Power distribution of various wavelengths for third-order Raman amplification based on UL-FLs. Red (curves a1 and a2), 1288 nm primary pump; green (curves b1 and b2), 1365 nm lasing beam; blue (curves c1 and c2), 1455 nm lasing beam; black (curve d), 1550 nm signal. (b) Total power distribution for different wavelength components. The transmission span is 100 km and the input signal power is 0 dBm.

Fig. 3.
Fig. 3.

(a) Signal power distribution over 100 km transmission span and (b) flatness degree as a function of transmission distance for different pumping schemes.

Fig. 4.
Fig. 4.

Required pump power for transparency transmission as a function of fiber length for different pumping schemes.

Fig. 5.
Fig. 5.

Net gain spectrum for different pumping schemes, where the transmission distance is 100 km

Fig. 6.
Fig. 6.

Power distribution of various wavelengths for third-order Raman amplification based on UL-FLs under different FBG reflectivity. Red (curves a1 and a2), 1288 nm primary pump; green (curves b1 and b2), 1365 nm lasing beam; blue (curves c1 and c2), 1455 nm lasing beam; black (curve d), 1550 nm signal. The transmission span is 100 km, and the input signal power is 0 dBm. The FBG reflectivity is (a) R1356nm=0%, R14555nm=95%; (b) R1365nm=95%, R1455nm=0%.

Fig. 7.
Fig. 7.

OSNR due to (a) ASE and (b) DRS as function of transmission span for different pumping schemes.

Fig. 8.
Fig. 8.

NF as function of transmission span for different pumping schemes.

Fig. 9.
Fig. 9.

Soliton evolution over a 10×100km fiber for (a) and (b) first-order, (c) and (d) second-order, and (e)and (f) third-order pumping based on UL-FLs, where Ld is 30 km in (a), (c), and (e) and 10 km in (b), (d), and (f).

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

±dP3±(μ3,z)dz=α(μ3)P3±(μ3,z)+ε(μ3)P3(μ3,z)μ3μ2gR(μ3,μ2)P3±(μ3,z)[P2+(μ2,z)+P2(μ2,z)]μ3μ2gR(μ3,μ2)P3±4hμ2Δν(μ2)[1+Θ(μ3μ2,T)],
±dP2±(μ2,z)dz=α(μ2)P2±(μ2,z)+ε(μ2)P2(μ2,z)+gR(μ3,μ2)P2±(μ2,z)[P3+(μ3,z)+P3(μ3,z)]+gR(μ3,μ2)[P3+(μ3,z)+P3(μ3,z)]2hμ2Δν(μ2)[1+Θ(μ3μ2,T)]μ2μ1gR(μ2,μ1)P2±(μ2,z)[P1+(μ1,z)+P1(μ1,z)]μ2μ1gR(μ2,μ1)P2±4hμ1Δν(μ1)[1+Θ(μ2μ1,T)],
±dP1±(μ1,z)dz=α(μ1)P1±(μ1,z)+ε(μ1)P1(μ1,z)+gR(μ2,μ1)P1±(μ1,z)[P2+(μ2,z)+P2(μ2,z)]+gR(μ2,μ1)[P2+(μ2,z)+P2(μ2,z)]2hμ1Δν(μ1)[1+Θ(μ2μ1,T)]μ1νgR(μ1,ν)P1±(μ1,z)Ps(ν,z)μ1νgR(μ1,ν)P1±4hνΔν(ν)[1+Θ(μ1ν,T)],
dPs(ν,z)dz=α(ν)Ps±+gR(μ1,ν)Ps(ν,z)[P1+(μ1,z)+P1(μ1,z)],
dPBS(ν,z)dz=α(ν)PBS+gR(μ1,ν)PBS(ν,z)[P1+(μ1,z)+P1(μ1,z)]+ε(ν)Ps(ν,z),
dPDRS(ν,z)dz=α(ν)PDRS+gR(μ1,ν)PDRS(ν,z)[P1+(μ1,z)+P1(μ1,z)]+ε(ν)PBS(ν,z),
±dPASE±(v,z)dz=α(ν)PASE±(ν,z)+gR(μ1,ν)PASE±(ν,z)[P1+(μ1,z)+P1(μ1,z)]+ε(ν)PASE(ν,z)+gR(μ1,ν)[P1+(μ1,z)+P1(μ1,z)]2hνΔν(ν)[1+Θ(μ1ν,T)],
Θ(ij,T)=1exp[h|ij|kT]1(i,j=μ1,μ2,μ3,ν),
P3+(μ3,0)=βP3,in(μ3),P3(μ3,L)=(1β)P3,in(μ3),
P2+(μ2,0)=R1365nmP2(μ2,0),P2(μ2,L)=R1365nmP2+(μ2,L),
P1+(μ1,0)=R1455nmP1(μ1,0),P1(μ1,L)=R1455nmP1+(μ1,L),
Ps(ν,0)=Ps,in,
PBS(ν,L)=0,PDRS(ν,0)=0,
PASE+(ν,0)=0,PASE(ν,L)=0,
OSNRASE=Ps(ν,L)PASE+(ν,L),
OSNRDRS=Ps(ν,L)PDRS(ν,L).
NF=1G+2SASEhνG+59Ps,infDRShνΔf,
Az+i2β22AT2=12[g(z)αs]A+iγ(|A|2ATRA|A|2T),

Metrics