Abstract

We propose a proposal for preparing the entanglement state among four trapped atoms via cavity-assisted interaction. In this scheme, a basic architecture will be built to produce the entangled state of four remote atoms. By adjusting a series of parameters and taking the single-photon pulses measurement, the architecture can realize the W state, the Greenberger–Horne–Zeilinger state, and the cluster state. Further, this scheme is insensitive to variation of the atom–photon coupling rate.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
    [CrossRef]
  2. A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
    [CrossRef]
  3. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  6. V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001).
    [CrossRef]
  7. G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
    [CrossRef]
  8. J. Kempe, “Multiparticle entanglement and its applications to cryptography,” Phys. Rev. A 60, 910–916 (1999).
    [CrossRef]
  9. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  10. R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
    [CrossRef]
  11. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
    [CrossRef]
  12. Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
    [CrossRef]
  13. L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
    [CrossRef]
  14. C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004).
    [CrossRef]
  15. J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
    [CrossRef]
  16. F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007).
    [CrossRef]
  17. D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
    [CrossRef]
  18. L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
    [CrossRef]
  19. L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011).
    [CrossRef]
  20. X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
    [CrossRef]
  21. C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
    [CrossRef]
  22. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
    [CrossRef]
  23. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
    [CrossRef]
  24. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
    [CrossRef]
  25. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
    [CrossRef]
  26. A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
    [CrossRef]
  27. R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
    [CrossRef]
  28. W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
    [CrossRef]
  29. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
    [CrossRef]
  30. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [CrossRef]
  31. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
    [CrossRef]
  32. B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
    [CrossRef]
  33. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
    [CrossRef]
  34. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
    [CrossRef]
  35. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
    [CrossRef]
  36. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
    [CrossRef]
  37. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
    [CrossRef]
  38. R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
    [CrossRef]
  39. J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
    [CrossRef]
  40. Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
    [CrossRef]
  41. J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
    [CrossRef]
  42. X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
    [CrossRef]
  43. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  44. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
    [CrossRef]
  45. W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
    [CrossRef]

2011

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011).
[CrossRef]

2010

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

2009

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

2008

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

2007

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

2006

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
[CrossRef]

L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

2005

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

2004

C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

2003

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

2002

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
[CrossRef]

2001

V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001).
[CrossRef]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

1999

J. Kempe, “Multiparticle entanglement and its applications to cryptography,” Phys. Rev. A 60, 910–916 (1999).
[CrossRef]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1991

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

1990

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Alton, D. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Aoki, T.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Blaauboer, M.

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007).
[CrossRef]

Blakestad, R. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Boca, A.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

Bochmann, J.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Bodoky, F.

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007).
[CrossRef]

Boozer, A. D.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

Bouwmeester, D.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

Britton, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Cabello, A.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

Ceccarelli, R.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

Chen, L.

L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011).
[CrossRef]

Chen, M.-Y.

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Chen, Y.-A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Chen, Z.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

Chen, Z.-H.

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Chiaverini, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Cho, J.

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Cleve, R.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Colombe, Y.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Dayan, B.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

De Martini, F.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

Deng, Z. J.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Du, J.

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Dubois, G.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Durkin, G. A.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Estève, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Feng, M.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Fritzsche, S.

D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Gao, J.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Gao, K. L.

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

Gao, W. B.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Gao, W.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

Gehr, R.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Gisin, N.

V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001).
[CrossRef]

Goebel, A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Gontcedila, D.

D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

Gottesman, D.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Gühne, O.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Guo, G.-C.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Hammerer, K.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Han, S.

C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004).
[CrossRef]

Han, Z.-F.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Henkel, F.

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hocke, F.

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Horne, M. A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Hume, D. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Itano, W. M.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Jin, L.

L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

Jost, J. D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Kaszlikowski, D.

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

Katori, H.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[CrossRef]

Kempe, J.

J. Kempe, “Multiparticle entanglement and its applications to cryptography,” Phys. Rev. A 60, 910–916 (1999).
[CrossRef]

Khosa, A. H.

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

Kiesel, N.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Kim, M. S.

J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
[CrossRef]

Kimble, H. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

Knill, E.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Krischek, R.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Krug, M.

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Langer, C.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Lee, H.-W.

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Lee, J.

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
[CrossRef]

Lee, S. M.

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

Lee, S.-W.

J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
[CrossRef]

Leibfried, D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Lev, B. L.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Li, X.-H.

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Lin, X.-M.

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Liu, Y.-X.

L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
[CrossRef]

Lo, H.-K.

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

Long, R.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Lu, C. Y.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Lu, C.-Y.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Lu, P. M.

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

Mataloni, P.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

Maunz, P.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Michelberger, P.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Miller, R.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

Moehring, D. L.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Mücke, M.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Müller, T.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Nori, F.

L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
[CrossRef]

Northup, T. E.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

Ostby, E.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Ozeri, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Pan, J. W.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Pan, J.-W.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Park, J.

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

Parkins, A. S.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Peng, C.-Z.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

Peng, X.

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Pinkse, P. W. H.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Polzik, E. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Puppe, T.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Radtke, T.

D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

Regal, C. A.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Reichel, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Reichle, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Rempe, G.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Rosenfeld, W.

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Scarani, V.

V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001).
[CrossRef]

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Schuster, I.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Seidelin, S.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Sen, A.

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

Sen, U.

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

She, W.

L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011).
[CrossRef]

Shimony, A.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Simon, C.

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
[CrossRef]

Song, H. S.

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

Song, J.

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

Song, Z.

L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

Sørensen, A. S.

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Specht, H. P.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Steinmetz, T.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Suter, D.

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

Syassen, N.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

Tóth, G.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Vahala, K. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

Vallone, G.

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Volz, J.

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Weber, B.

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Weber, M.

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

Wei, L. F.

L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
[CrossRef]

Weinfurter, H.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Wieczorek, W.

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wiesniak, M.

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

Wineland, D. J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Xia, Y.

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

Xiao, Y.-F.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Xu, P.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

Xue, P.

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Yang, C.-P.

C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004).
[CrossRef]

Yang, T.

C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Yang, Y.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Yao, X.-C.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

Ye, J.

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[CrossRef]

Yuan, Z. S.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Zhang, A.-N.

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Zhang, J.

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zhao, Z.

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Zhou, X. Q.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zhou, X.-Q.

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Zukowski, M.

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

Am. J. Phys.

D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).
[CrossRef]

Nat. Phys.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state,” Nat. Phys. 6, 331–335 (2010).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Nature

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom ‘Schrödinger cat’ state,” Nature 438, 639–642 (2005).
[CrossRef]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005).
[CrossRef]

Opt. Commun.

Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Preparation of Greenberger–Horne–Zeilinger and W states of three atoms trapped in one cavity through cavity output process,” Opt. Commun. 284, 1094–1098 (2011).
[CrossRef]

Phys. Rev. A

A.-N. Zhang, C.-Y. Lu, X.-Q. Zhou, Y.-A. Chen, Z. Zhao, T. Yang, and J.-W. Pan, “Experimental construction of optical multiqubit cluster states from Bell states,” Phys. Rev. A 73, 022330 (2006).
[CrossRef]

Z. J. Deng, M. Feng, and K. L. Gao, “Preparation of entangled states of four remote atomic qubits in decoherence-free subspace,” Phys. Rev. A 75, 024302 (2007).
[CrossRef]

J. Lee, J. Park, S. M. Lee, H.-W. Lee, and A. H. Khosa, “Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields,” Phys. Rev. A 77, 032327 (2008).
[CrossRef]

X.-M. Lin, P. Xue, M.-Y. Chen, Z.-H. Chen, and X.-H. Li, “Scalable preparation of multiple-particle entangled states via the cavity input–output process,” Phys. Rev. A 74, 052339 (2006).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004).
[CrossRef]

A. Sen, U. Sen, M. Wieśniak, D. Kaszlikowski, and M. Żukowski, “Multiqubit W states lead to stronger nonclassicality than Greenberger–Horne–Zeilinger states,” Phys. Rev. A 68, 062306 (2003).
[CrossRef]

J. Kempe, “Multiparticle entanglement and its applications to cryptography,” Phys. Rev. A 60, 910–916 (1999).
[CrossRef]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

C.-P. Yang and S. Han, “Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED,” Phys. Rev. A 70, 062323 (2004).
[CrossRef]

J. Lee, S.-W. Lee, and M. S. Kim, “Greenberger–Horne–Zeilinger nonlocality in arbitrary even dimensions,” Phys. Rev. A 73, 032316 (2006).
[CrossRef]

F. Bodoky and M. Blaauboer, “Production of multipartite entanglement for electron spins in quantum dots,” Phys. Rev. A 76, 052309 (2007).
[CrossRef]

D. Gontcedila, S. Fritzsche, and T. Radtke, “Generation of four-partite Greenberger–Horne–Zeilinger and W states by using a high-finesse bimodal cavity,” Phys. Rev. A 77, 062312 (2008).
[CrossRef]

L. Jin and Z. Song, “Generation of Greenberger–Horne–Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

L. Chen and W. She, “Spin-orbit-path hybrid Greenberger–Horne–Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom,” Phys. Rev. A 83, 032305 (2011).
[CrossRef]

X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010).
[CrossRef]

Phys. Rev. Lett.

C.-Y. Lu, T. Yang, and J.-W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009).
[CrossRef]

R. Cleve, D. Gottesman, and H.-K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999).
[CrossRef]

R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001).
[CrossRef]

G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptography,” Phys. Rev. Lett. 88, 187902 (2002).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004).
[CrossRef]

W. Rosenfeld, F. Hocke, F. Henkel, M. Krug, J. Volz, M. Weber, and H. Weinfurter, “Towards long-distance atom–photon entanglement,” Phys. Rev. Lett. 101, 260403 (2008).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007).
[CrossRef]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102, 083601 (2009).
[CrossRef]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom-cavity system,” Phys. Rev. Lett. 94, 033002 (2005).
[CrossRef]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006).
[CrossRef]

R. Gehr, J. Volz, G. Dubois, T. Steinmetz, Y. Colombe, B. L. Lev, R. Long, J. Estève, and J. Reichel, “Cavity-based single atom preparation and high-fidelity hyperfine state readout,” Phys. Rev. Lett. 104, 203602 (2010).
[CrossRef]

J. Cho and H.-W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, “Experimental entanglement and nonlocality of a two-photon six-qubit cluster state,” Phys. Rev. Lett. 103, 160401 (2009).
[CrossRef]

W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Experimental entanglement of a six-photon symmetric Dicke state,” Phys. Rev. Lett. 103, 020504 (2009).
[CrossRef]

L. F. Wei, Y.-X. Liu, and F. Nori, “Generation and control of Greenberger–Horne–Zeilinger entanglement in superconducting circuits,” Phys. Rev. Lett. 96, 246803 (2006).
[CrossRef]

B. Weber, H. P. Specht, T. Müller, J. Bochmann, M. Mücke, D. L. Moehring, and G. Rempe, “Photon–photon entanglement with a single trapped atom,” Phys. Rev. Lett. 102, 030501 (2009).
[CrossRef]

Rev. Mod. Phys.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010).
[CrossRef]

Science

J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734–1738 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Representative level diagrams of three-level trapped atoms. The |0|e transition of the atoms is resonant to the |H polarization component of the cavity mode with the coupling constant g. (b) Schematic illustration for the CPF gate between the atom and the photon with a PBS; the |H polarization component of an input single-photon pulse driving the cavity mode is reflected by the cavity, while the |V polarization component is reflected via the mirror M.

Fig. 2.
Fig. 2.

Schematic diagram of producing the entangled state for four remote atoms. PBSj (j=0,15) is the polarization beam splitter. HWPi (i=1,26) is the half-wave plate with its axis θi. C1 and C2 are the circulators. D1 and D2 are the single-photon detectors. Cavity 1–4 are one-sided optical cavities containing a single trapped atom, respectively. M0–M5 are the mirrors. The fiber loop compensates for the optical path of the photon pulse via the path a.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ahoutiΔκ/2iΔ+κ/2ahint,
UCPF=eiπ|11||HH|.
12(|Ha+|Va)l|+l=1,2,3,4+12(|Hb+|Vb)l|+l=1,2,3,4.
12(|Ha|1l|+l1+|Val|+l=1,2,3,4)+12(|Hb+|Vb)l|+l=1,2,3,4.
12(|Ha|1l|+l1+|Va|2l|+l2)+12(|Hb+|Vb)l|+l=1,2,3,4.
12(|Ha|1l|+l1+|Va|2l|+l2+|Hb|3l|+l3+|Vbl|+l=1,2,3,4).
12(|Ha|1l|+l1+|Va|2l|+l2+|Hb|3l|+l3+|Vb|4l|+l4).
12(|1l|+l1+|2l|+l2+|3l|+l3|4l|+l4).
12(|1l|+l1|2l|+l2+|3l|+l3+|4l|+l4).
12(|Hal|+l=1,2,3,4+|Hbl|+l=1,2,3,4).
12(|Ha|1l|+l1+|Hbl|+l=1,2,3,4).
12(|Ha|1|2|+3|+4+|Hbl|+l=1,2,3,4).
12(|Ha|1|2|+3|+4+|Hb|+1|+2|3|4).
12(|1|2|+3|+4+|+1|+2|3|4).
12(|1|2|+3|04+|+1|+2|3|14).
12(|Ha+|Vb)12(|1|2|+3|04+|+1|+2|3|14).
12[|Ha(|+1|+2|+3|04+|1|2|3|14)+|Vb(|1|2|+3|04+|+1|+2|3|14)].
12[|Ha(|+1|+2|+3|04+|1|2|3|14)+|Hb(|1|2|+3|04+|+1|+2|3|14)].
12[|Ha(|+1|+2|+3|04+|1|2|3|14)+|Vb(|1|2|+3|04|+1|+2|3|14)].
12(|+1|+2|+3|04+|1|2|3|14|1|2|+3|04+|+1|+2|3|14).
12(|+1|+2|+3|04+|1|2|3|14+|1|2|+3|04|+1|+2|3|14).
12(|+1|+2|+3|+4+|+1|+2|3|4+|1|2|+3|+4|1|2|3|4).

Metrics