Abstract

We investigate the evolution of ultrashort pulses with an antisymmetric spectral phase during propagation through an optical fiber in presence of nonlinear effects. The shaped pulses are then applied for selective excitation of nonresonant two-photon transitions. Both numerical simulations and measurements confirm that a certain class of antisymmetric phase, a π-step, remains approximately antisymmetric—and is therefore suitable for the selective excitation—even though the pulse spectrum is significantly modified by self-phase modulation. Second-harmonic generation is used as a model two-photon transition. Furthermore, the capability of generating two perpendicularly polarized subpulses with independently shaped phase is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
    [CrossRef]
  2. A. M. Larson and A. T. Yeh, “Delivery of sub-10 fs pulses for nonlinear optical microscopy by polarization-maintaining single-mode optical fiber,” Opt. Express 16, 14723–14730 (2008).
    [CrossRef]
  3. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17, 1240–1247 (2009).
    [CrossRef]
  4. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
    [CrossRef]
  5. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
    [CrossRef]
  6. I. Pastirk, J. D. Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
    [CrossRef]
  7. J. P. Ogilvie, D. Débarre, X. Solinas, J. Martin, E. Beaurepaire, and M. Joffre, “Use of coherent control for selective two-photon fluorescence microscopy in live organisms,” Opt. Express 14, 759–766 (2006).
    [CrossRef]
  8. G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier, E. Beaurepaire, and M. Joffre, “Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy,” Opt. Lett. 35, 3444–3446 (2010).
    [CrossRef]
  9. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
    [CrossRef]
  10. D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
    [CrossRef]
  11. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
    [CrossRef]
  12. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
    [CrossRef]
  13. B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
    [CrossRef]
  14. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [CrossRef]
  15. P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007).
    [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  17. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011).
    [CrossRef]
  18. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef]
  19. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
    [CrossRef]
  20. B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
    [CrossRef]
  21. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
    [CrossRef]
  22. D. J. McCabe, D. R. Austin, A. Tajalli, S. Weber, I. A. Walmsley, and B. Chatel, “Space-time coupling of shaped ultrafast ultraviolet pulses from an acousto-optic programmable dispersive filter,” J. Opt. Soc. Am. B 28, 58–64 (2011).
    [CrossRef]
  23. P. Panek and A. Becker, “Dark pulses for resonant two-photon transitions,” Phys. Rev. A 74, 023408 (2006).
    [CrossRef]
  24. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6 fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [CrossRef]
  25. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “Lab2-a virtual femtosecond laser lab,” http://www.lab2.de .
  26. S. Santran, L. Canioni, L. Sarger, T. Cardinal, and E. Fargin, “Precise and absolute measurements of the complex third-order optical susceptibility,” J. Opt. Soc. Am. B 21, 2180–2190 (2004).
    [CrossRef]
  27. T. Yasui, Y. Tohno, and T. Araki, “Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular second-harmonic-generation light,” Appl. Opt. 43, 2861–2867 (2004).
    [CrossRef]
  28. S. Brasselet, “Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging,” Adv. Opt. Photon. 3, 205–271 (2011).
    [CrossRef]
  29. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
    [CrossRef]
  30. S. Thomas, A. Malacarne, F. Fresi, L. Potì, A. Bogoni, and J. Azaña, “Programmable fiber-based picosecond optical pulse shaper using time-domain binary phase-only linear filtering,” Opt. Lett. 34, 545–547 (2009).
    [CrossRef]

2011 (4)

2010 (3)

G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier, E. Beaurepaire, and M. Joffre, “Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy,” Opt. Lett. 35, 3444–3446 (2010).
[CrossRef]

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

2009 (3)

2008 (2)

A. M. Larson and A. T. Yeh, “Delivery of sub-10 fs pulses for nonlinear optical microscopy by polarization-maintaining single-mode optical fiber,” Opt. Express 16, 14723–14730 (2008).
[CrossRef]

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

2007 (2)

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007).
[CrossRef]

2006 (2)

2004 (2)

2003 (2)

I. Pastirk, J. D. Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

2001 (1)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

2000 (1)

1999 (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

1998 (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

1997 (1)

1993 (1)

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

1992 (1)

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef]

1990 (1)

Achazi, G.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[CrossRef]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

Andegeko, Y.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

Araki, T.

Austin, D. R.

Azaña, J.

Baltuska, A.

Beaurepaire, E.

Becker, A.

P. Panek and A. Becker, “Dark pulses for resonant two-photon transitions,” Phys. Rev. A 74, 023408 (2006).
[CrossRef]

Bogoni, A.

Bonacina, L.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Boudoux, C.

Boutou, V.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Brasselet, S.

Broers, B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef]

Canioni, L.

Cardinal, T.

Chatel, B.

Cheng, Z.

Courvoisier, F.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Cruz, J. D.

Dantus, M.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

I. Pastirk, J. D. Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

Dayan, B.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

Débarre, D.

Dudovich, N.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

Extermann, J.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Faeder, S. M. G.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

Fargin, E.

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Fresi, F.

Gaeta, A. L.

Galez, C.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Hashimoto, H.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Hofer, M.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Isobe, K.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Joffre, M.

Kannari, F.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Kawano, H.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Labroille, G.

Lambert, Y.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Larson, A. M.

Laude, V.

Lausten, R.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Le, T.

Le Dantec, R.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Leaird, D. E.

Lindinger, A.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[CrossRef]

Lozovoy, V.

Lozovoy, V. V.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

Malacarne, A.

Martin, J.

McCabe, D. J.

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

Midorikawa, K.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Miyawaki, A.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Mizuno, H.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Mugnier, Y.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Noordam, L. D.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef]

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Ogilvie, J. P.

Olivier, N.

Panek, P.

P. Panek and A. Becker, “Dark pulses for resonant two-photon transitions,” Phys. Rev. A 74, 023408 (2006).
[CrossRef]

Pastirk, I.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

I. Pastirk, J. D. Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[CrossRef]

Patel, J. S.

Pawlowska, M.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[CrossRef]

Pestov, D.

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

Pillai, R. S.

Potì, L.

Pshenichnikov, M. S.

Radzewicz, C.

P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007).
[CrossRef]

Ranka, J. K.

Santran, S.

Sarger, L.

Silberberg, Y.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

Solinas, X.

Spielmann, C.

Stingl, A.

Stolow, A.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Suda, A.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Sussman, B. J.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Tajalli, A.

Tanaka, M.

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

Tempea, G.

Thomas, S.

Tohno, Y.

Tournois, P.

van Linden van den Heuvell, H. B.

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef]

Verluise, F.

Walmsley, I. A.

Walowicz, K.

Walowicz, K. A.

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

Weber, S.

Weiner, A. M.

Weise, F.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Parametrically phase-, amplitude-, and polarization-shaped femtosecond laser pulses guided via a step-index fiber,” J. Opt. Soc. Am. B 28, 406–415 (2011).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[CrossRef]

Wiersma, D. A.

Wnuk, P.

P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007).
[CrossRef]

Wolf, J.-P.

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Wullert, J. R.

Yasui, T.

Yeh, A. T.

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. B (1)

L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Nonlinear optical microscopy and spectroscopy employing octave spanning pulses,” IEEE J. Sel. Top. Quantum Electron. 16, 767–780 (2010).
[CrossRef]

J. Chem. Phys. (2)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. II. control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[CrossRef]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

J. Opt. (2)

D. Pestov, Y. Andegeko, V. V. Lozovoy, and M. Dantus, “Photobleaching and photoenhancement of endogenous fluorescence observed in two-photon microscopy with broadband laser sources,” J. Opt. 12, 084006 (2010).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, “Full control of polarization and temporal shape of ultrashort laser pulses transmitted through an optical fibre,” J. Opt. 13, 075301 (2011).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[CrossRef]

Opt. Commun. (1)

P. Wnuk and C. Radzewicz, “Coherent control and dark pulses in second harmonic generation,” Opt. Commun. 272, 496–502 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (4)

P. Panek and A. Becker, “Dark pulses for resonant two-photon transitions,” Phys. Rev. A 74, 023408 (2006).
[CrossRef]

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60, 1287–1292 (1999).
[CrossRef]

B. Broers, L. D. Noordam, and H. B. van Linden van den Heuvell, “Diffraction and focusing of spectral energy in multiphoton processes,” Phys. Rev. A 46, 2749–2756 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett. 86, 47–50 (2001).
[CrossRef]

Other (2)

G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “Lab2-a virtual femtosecond laser lab,” http://www.lab2.de .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The principle of generating two perpendicular pulses with independently shaped phase.

Fig. 2.
Fig. 2.

Second-harmonic spectrum generated by phase-shaped pulses with a π spectral phase step in a thin BBO crystal (measured without the fiber).

Fig. 3.
Fig. 3.

(a) SHG signal for narrow transitions with different wavelengths obtained with phase-shaped pulses, depending on the position of the π-step, normalized with the short pulse signal. (b) Contrast calculated for the results in (a).

Fig. 4.
Fig. 4.

The influence of self-phase modulation on the spectrum of the pulse after the fiber depending on the prechirp and pulse energy. (a) Simulation; inset: prechirp that yields minimal pulse length after the fiber. (b) Measurement; inset: example spectra for chirp values yielding minimal pulse length for energies 0.2 and 0.6nJ.

Fig. 5.
Fig. 5.

Simulation of the influence of nonlinear effects in the fiber on the spectral phase (red solid line) and amplitude (black solid line) of pulses with a π-step in phase (a) at the central wavelength (b) shifted by 6nm for pulse energies of 0.01nJ (linear regime), 0.26nJ, and 0.6nJ. For comparison, pulses not affected by nonlinear effects are shown (red and black dashed line).

Fig. 6.
Fig. 6.

Second-harmonic spectrum generated in a thin BBO crystal by phase-shaped pulses with a π spectral phase step transmitted through a fiber, for (a) 0.26nJ and (b) 0.6nJ pulse energy.

Fig. 7.
Fig. 7.

SHG signal for pulses transmitted through the fiber as in Fig. 3(a), but including Φoffset(EP): (a) simulation and (b) measurement, for pulse energies 0.26nJ (left) and 0.6nJ (right). (c) Contrast calculated for the results in (b).

Fig. 8.
Fig. 8.

SH signal at the polarization orientation (a) A and (b) B while scanning phase at orientation A.

Fig. 9.
Fig. 9.

Example pulse with a π-step in phase at 780nm for the subpulse A and 786nm for the subpulse B.

Tables (1)

Tables Icon

Table 1. Experimental Chirp Values Yielding Minimal Pulse Length After Transmission through the Fiber for Energies 0.2nJ and 0.6nJ

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(2)(2ω0)=|E(ω0+Ω)||E(ω0Ω)|ei(Φ(ω0+Ω)+Φ(ω0Ω))dΩ.
Φ(ω0+Ω)=Φ(ω0Ω)
dAdz+β1dAdt+iβ22d2Adt2β36d3Adt3+=iγ(ω0)|A|2A,
Γ=S1S2S1+S2

Metrics