Abstract

Plasmonic inverse-rib optical waveguides, consisting of a high-index inverse rib embedded in low-index medium above a flat metallic surface, are investigated under four aspects: (i) the optimal angle θ of the rib sidewall for tight modal confinement is assessed, (ii) the effect of the geometric parameters and the wavelength on propagation losses is given, (iii) we use a 3D simulation to assess how well light from an emitting dipole is captured by such a tightly guiding structure, and (iv) we show that for two such parallel hybrid waveguiding systems, when one of them has added gain, we have a plasmonic version of the PT-symmetric waveguide arrangement, and we additionally show that complex gain is needed to restore a truly exceptional point in its propagation constant evolution.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription