Abstract

A cryogenic Faraday isolator with disc-shaped magneto-optical element is described. Depolarization of laser radiation caused by transverse inhomogeneity of Verdet constant has been measured for the first time. The decrease of the thermally induced effects caused by heat removal from the face-end of the magneto-optical element of terbium gallium garnet with sapphire and aluminum-yttrium garnet discs is investigated. Characteristics of the cryogenic Faraday isolator at high laser power above 1 kW have been investigated experimentally and the possibility of its use at power as high as 6 kW is demonstrated. The reduction of thermo-optical constants Q and P by a factor of 5.7 and 6.8, respectively, with cooling from 300 K to 80 K has been measured for TGG crystal.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.st.northropgrumman.com , “Northrop Grumman.”
  2. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
    [CrossRef]
  3. VIRGO-Collaboration, “In-vacuum optical isolation changes by heating in a Faraday isolator,” Appl. Opt. 47, 5853–5861 (2008).
  4. C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
    [CrossRef]
  5. N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992).
    [CrossRef]
  6. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  7. A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
    [CrossRef]
  8. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
    [CrossRef]
  9. K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.
  10. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef]
  11. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
    [CrossRef]
  12. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
    [CrossRef]
  13. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
    [CrossRef]
  14. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
    [CrossRef]
  15. A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
    [CrossRef]
  16. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
    [CrossRef]
  17. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
    [CrossRef]
  18. I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004).
    [CrossRef]
  19. R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.
  20. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  21. E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).
  22. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).
  23. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
    [CrossRef]
  24. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28, 1409–1415 (2011).
    [CrossRef]
  25. D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
    [CrossRef]
  26. http://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf , “Kyocera Corporation.”
  27. St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994).
    [CrossRef]
  28. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
    [CrossRef]
  29. M. J. Weber, Handbook of Optical Materials (CRC, 2003).

2011

2010

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

2008

2007

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
[CrossRef]

2006

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

2004

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004).
[CrossRef]

2002

2001

2000

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, and D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

1999

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

1997

1994

St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994).
[CrossRef]

1992

N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992).
[CrossRef]

1971

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

1967

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Anastasiyev, A. A.

Andreev, N.

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Babin, A.

Barnes, N. P.

N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992).
[CrossRef]

Burghartza, St.

St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994).
[CrossRef]

Byer, R. L.

Clubley, D.

Daniels, M.

K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.

Fejer, M. M.

Fujimoto, Y.

Furukawa, H.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Grishin, M.

E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).

Gustafson, E. K.

Hennawi, J.

Hoffmann, D.

K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.

Hohn, R.

K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.

Ikegawa, T.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Izawa, Y.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Kan, H.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
[CrossRef]

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

Kawanaka, J.

Kawashima, T.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
[CrossRef]

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Khazanov, E.

Khazanov, E. A.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28, 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Kiselev, A.

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Kurita, T.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Mal’shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Malshakov, A. N.

Mansell, J. D.

Matsumoto, O.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Mehl, O.

Mezenov, A. V.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004).
[CrossRef]

Nakatsuka, M.

Nicklaus, K.

K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.

Norimatsu, T.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Nozawa, H.

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Padula, C. F.

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

Palashov, O.

Palashov, O. V.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28, 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, and O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Pasmanik, G.

Petway, L. P.

N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

A. N. Malshakov, G. Pasmanik, and A. K. Poteomkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36, 6403–6410 (1997).
[CrossRef]

Reitze, D.

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Schulza, B.

St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994).
[CrossRef]

Sekine, T.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Sergeev, A.

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Soms, L. N.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).

Starobor, A. V.

Stepanov, A. I.

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Tokita, S.

Voitovich, A. V.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

Voytovich, A.

Voytovich, A. V.

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Yagi, H.

Yamanaka, M.

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Yanagitani, T.

Yasuhara, R.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15, 11255–11261 (2007).
[CrossRef]

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

Yoshida, H.

Yoshida, S.

J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt. 40, 366–374 (2001).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Young, C. G.

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

Zelenogorskii, V. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

Zheleznov, D. S.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B 28, 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40, 1500–1510 (2004).
[CrossRef]

C. F. Padula and C. G. Young, “Optical isolators for high-power 1.06-micron glass laser systems,” IEEE J. Quantum Electron. 3, 493–498 (1967).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

D. S. Zheleznov, E. A. Khazanov, I. B. Mukhin, O. V. Palashov, and A. V. Voytovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43, 451–457 (2007).
[CrossRef]

J. Nucl. Mat.

St. Burghartza and B. Schulza, “Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K,” J. Nucl. Mat. 212–215, 1065–1068 (1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

N. P. Barnes, and L. P. Petway, “Variation of the Verdet constant with temperature of TGG,” J. Opt. Soc. Am. B. 9, 1912–1915 (1992).
[CrossRef]

Opt. Express

Phys. Rev. B

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B 4, 592–609 (1971).
[CrossRef]

Quantum Electron.

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, and D. H. Reitze, “A 45-dB Faraday isolator for 100-W average radiation power,” Quantum Electron. 30, 1107–1108 (2000).
[CrossRef]

A. V. Voytovich, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Wide-aperture Faraday isolator for kilowatt average radiation powers,” Quantum Electron. 37, 471–474 (2007).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron. 36, 383–388 (2006).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron. 40, 276–281 (2010).
[CrossRef]

I. B. Mukhin and E. A. Khazanov, “Use of thin discs in Faraday isolators for high-average-power lasers,” Quantum Electron. 34, 973–978 (2004).
[CrossRef]

Other

R. Yasuhara, M. Yamanaka, T. Norimatsu, Y. Izawa, T. Kawashima, T. Ikegawa, O. Matsumoto, T. Sekine, T. Kurita, H. Kan, and H. Furukawa, “Design and analysis on face-cooled disk Faraday rotator for high average power lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2005), MB43.

K. Nicklaus, M. Daniels, R. Hohn, and D. Hoffmann, “Optical isolator for unpolarized laser radiation at multi-kilowatt average power,” in Advanced Solid-State Photonics (Optical Society of America, 2006), MB7.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

http://global.kyocera.com/prdct/fc/product/pdf/s_c_sapphire.pdf , “Kyocera Corporation.”

http://www.st.northropgrumman.com , “Northrop Grumman.”

E. Khazanov, “Faraday isolators for high average power lasers,” in Advances in Solid State Lasers Development and Applications, M. Grishin, ed. (INTECH, 2010).

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for measurement of (a) isolation ratio of the CFI, (b) optical power of the thermal lens: 1—ytterbium fiber laser, 2—cryostat (dashed line), 3—quartz windows, 4—MS, 5—MOE, 6—quartz wedges, 7—water cooled absorber, 8—Glan prism, 9—power meter (CCD-camera), 10, 11—dielectric mirrors, 12—measuring lens (F=507mm).

Fig. 2.
Fig. 2.

Theoretical (lines) and experimental (figures) dependences of depolarization on the radiation power in CFI at 80 K: for a TGG crystal with increased absorption 3.5·103cm1, L=8.1mm (crosses, stars) and for a TGG crystal with decreased absorption 7·104cm1, L=3.4mm: without magnetic field (diamonds); without end-face heat sink (triangles); with end-face heat sink by a sapphire disc (squares) and by a YAG-disk (circles).

Fig. 3.
Fig. 3.

Experimental (a),(c) and theoretical (b),(d) structure of depolarized radiation beams: (a),(b)—“Geneva wheel” typical of depolarization component caused by the photoelastic effect. (c), (d)—annular structure typical of γH and γV caused by the transverse inhomogeneity of the angle of rotation.

Fig. 4.
Fig. 4.

Theoretical (lines) and experimental (figures) dependences of normalized depolarization γVnorm on radius ρnorm in CFI at T=80K for Plas=530W (squares), Plas=765W (triangles).

Fig. 5.
Fig. 5.

Theoretical (dashed line) and experimental dependences of depolarization on radiation power at 300 K (empty triangles) and at 80 K (black diamonds, triangles); in the presence (diamonds) and in the absence of magnetic field (triangles).

Fig. 6.
Fig. 6.

Theoretical (dashed lines) and experimental (diamonds, squares) curves of the optical power of thermal lens versus the radiation power in CFI at room temperature (300 K, diamonds) and at nitrogen temperature (80 K, squares).

Tables (1)

Tables Icon

Table 1. Conditions and Results of CFI Isolation Ratio Experimental Measurements

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

FT=4πa2(αLPκPlas)1,
I[dB]=10·lg(1γ),
γ=Pd/P0.
φ=VHL,
δφ(ρ)=φ(ρ)φ(ρ*)=VL(H(ρ)H(ρ*)),
γH=02πdθ0Rsin2(δφ(ρ))Ilas(ρ)ρdρ02πdθ0RIlas(ρ)ρdρ,
γH0(δφ(ξ))2exp(ξ)dξ,
γHmin=π216(0(H(ξ)H(ρ*))2exp(ξ)dξ(0H(ξ)H(ρ*)exp(ξ)dξ)2).
γHminπ216ΔH2a4H4.
γpmin=Aπ2(αQLPlasλκ)2,
γV=B(αPlasκ1VdVdT)2,
γV=B(φ0π/4αPlasκT)2,
L*=πBAλ|1QVdVdT|.
LL*>3,

Metrics