Abstract

We propose a novel liquid-core waveguide using water-based ferrofluids as the guiding layer in a symmetrical metal-cladding waveguide structure to investigate the magneto-optical effect of extremely dilute ferrofluids. Owing to the high sensitivity of the ultra-high-order modes, the reflection intensity can be effectively tuned even by a weak magnetic field and the modulated reflectivity exhibits no threshold behavior. Furthermore, by properly adjusting the transmission axes of the polarizer, the detected laser intensity can be magnetic-field independent because the refractive indices for ordinary and extraordinary rays vary oppositely under the external field.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Holm and J. J. Weis, “The structure of ferrofluids: a status report,” Curr. Opin. Coll. Interf. Sci. 10, 133–140 (2005).
    [CrossRef]
  2. C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
    [CrossRef]
  3. V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
    [CrossRef]
  4. A. O. Ivanov and S. S. Kantorovich, “Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids,” Phys. Rev. E 70, 021401 (2004).
    [CrossRef]
  5. A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
    [CrossRef]
  6. A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
    [CrossRef]
  7. C. Y. Hong, “Optical switch devices using the magnetic fluid thin films,” J. Magn. Magn. Mater. 201, 178–181 (1999).
    [CrossRef]
  8. S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
    [CrossRef]
  9. H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
    [CrossRef]
  10. H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
    [CrossRef]
  11. H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
    [CrossRef]
  12. H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
    [CrossRef]
  13. P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
    [CrossRef]
  14. M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
    [CrossRef]
  15. R. Richter and I. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).
    [CrossRef]
  16. T. Mahr and I. Rehberg, “Parametrically excited surface waves in magnetic fluids: observation of domain structures,” Phys. Rev. Lett. 81, 89–92 (1998).
    [CrossRef]
  17. H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
    [CrossRef]
  18. A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
    [CrossRef]
  19. J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
    [CrossRef]
  20. J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
    [CrossRef]
  21. W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
    [CrossRef]
  22. H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
    [CrossRef]
  23. Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
    [CrossRef]
  24. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [CrossRef]
  25. X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
    [CrossRef]

2011

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

2008

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
[CrossRef]

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

2007

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

2006

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

2005

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

R. Richter and I. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).
[CrossRef]

C. Holm and J. J. Weis, “The structure of ferrofluids: a status report,” Curr. Opin. Coll. Interf. Sci. 10, 133–140 (2005).
[CrossRef]

2004

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

A. O. Ivanov and S. S. Kantorovich, “Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids,” Phys. Rev. E 70, 021401 (2004).
[CrossRef]

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

2003

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

2001

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

2000

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
[CrossRef]

1999

C. Y. Hong, “Optical switch devices using the magnetic fluid thin films,” J. Magn. Magn. Mater. 201, 178–181 (1999).
[CrossRef]

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

1998

T. Mahr and I. Rehberg, “Parametrically excited surface waves in magnetic fluids: observation of domain structures,” Phys. Rev. Lett. 81, 89–92 (1998).
[CrossRef]

1995

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

Azevedo, R.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

Bai, L.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

Bakuzis, A.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

Barashenkov, I.

R. Richter and I. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).
[CrossRef]

Bica, D.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Cao, Z.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Chao, Y.

Chen, C.

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

Chen, C. H.

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Chen, X.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

Chieh, J.

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

Chiu, Y.

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Da Silva, M.

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

Dai, Q. F.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Deng, H. D.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Dullens, R. P. A.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Engel, A.

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

Erné, B. H.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Fan, X.

Fang, K.

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

Furubayashi, T.

H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
[CrossRef]

Gopal, A. V.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

He, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Hetherington, J.

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

Holm, C.

C. Holm and J. J. Weis, “The structure of ferrofluids: a status report,” Curr. Opin. Coll. Interf. Sci. 10, 133–140 (2005).
[CrossRef]

Hong, C. Y.

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

C. Y. Hong, “Optical switch devices using the magnetic fluid thin films,” J. Magn. Magn. Mater. 201, 178–181 (1999).
[CrossRef]

Horng, H.

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Hsiao, Y.

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

Huang, S.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Huang, Y.

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

Ivanov, A. O.

A. O. Ivanov and S. S. Kantorovich, “Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids,” Phys. Rev. E 70, 021401 (2004).
[CrossRef]

Jund, P.

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

Jung, A.

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

Kantorovich, S. S.

A. O. Ivanov and S. S. Kantorovich, “Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids,” Phys. Rev. E 70, 021401 (2004).
[CrossRef]

Kim, S.

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

Klokkenburg, M.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Lan, S.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Lee, J.

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

Lee, K. J.

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

Li, H.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Li, J.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Li, Q.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

Lin, C. H.

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Lin, X. S.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Lin, Y.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Liu, J.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Liu, X.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Lu, H.

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Luca, D.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Ma, X.

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Mahr, T.

T. Mahr and I. Rehberg, “Parametrically excited surface waves in magnetic fluids: observation of domain structures,” Phys. Rev. Lett. 81, 89–92 (1998).
[CrossRef]

Mamiya, H.

H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
[CrossRef]

Meeldijk, J. D.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Morais, P.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

Müller, H. W.

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

Nakatani, I.

H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
[CrossRef]

Neto, K. S.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

Osvath, L.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Park, S.

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

Petukhov, A. V.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Philipse, A. P.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Pi, H. J.

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

Qiu, X.

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Rasa, M.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Rehberg, I.

T. Mahr and I. Rehberg, “Parametrically excited surface waves in magnetic fluids: observation of domain structures,” Phys. Rev. Lett. 81, 89–92 (1998).
[CrossRef]

Reimann, P.

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

Richter, R.

R. Richter and I. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).
[CrossRef]

Shen, Q.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Silva, L.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

Socoliuc, V.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Sofonea, V.

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

Sun, J.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Sun, T.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Tománek, D.

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

Wang, A.

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

Wang, X.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Wang, Y.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Weis, J. J.

C. Holm and J. J. Weis, “The structure of ferrofluids: a status report,” Curr. Opin. Coll. Interf. Sci. 10, 133–140 (2005).
[CrossRef]

White, I. M.

Wiedenmann, A.

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

Wu, L. J.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Xiao, P.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Yang, H.

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Yang, S.

H. Horng, J. Chieh, Y. Chao, S. Yang, C. Y. Hong, and H. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef]

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

Yin, C.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Yu, T.

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Yuan, W.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Zhang, W.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Zhao, W. R.

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

Zhu, P.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

Appl. Phys. Lett.

H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Y. Hong, and H. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett. 85, 5592–5594 (2004).
[CrossRef]

H. D. Deng, J. Liu, W. R. Zhao, W. Zhang, X. S. Lin, T. Sun, Q. F. Dai, L. J. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” Appl. Phys. Lett. 92, 233103 (2008).
[CrossRef]

J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, and A. Wang, “Field modulation of light transmission through ferrofluid film,” Appl. Phys. Lett. 91, 253108 (2007).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, “Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 83, 2757–2759 (2003).
[CrossRef]

Y. Wang, H. Li, Z. Cao, T. Yu, Q. Shen, and Y. He, “Oscillating wave sensor based on the Goos–Hänchen effect,” Appl. Phys. Lett. 92, 061117 (2008).
[CrossRef]

Curr. Opin. Coll. Interf. Sci.

C. Holm and J. J. Weis, “The structure of ferrofluids: a status report,” Curr. Opin. Coll. Interf. Sci. 10, 133–140 (2005).
[CrossRef]

J. Appl. Phys.

A. Bakuzis, K. S. Neto, L. Silva, R. Azevedo, and P. Morais, “Experimental evidence of monomer contribution to the static magnetic birefringence in magnetic fluids,” J. Appl. Phys. 90, 891–895 (2001).
[CrossRef]

A. Bakuzis, M. Da Silva, P. Morais, and K. S. Neto, “Irreversibility of zero-field birefringence in ferrofluids upon temperature reversal,” J. Appl. Phys. 87, 2307–2311 (2000).
[CrossRef]

J. Magn. Magn. Mater.

C. Y. Hong, “Optical switch devices using the magnetic fluid thin films,” J. Magn. Magn. Mater. 201, 178–181 (1999).
[CrossRef]

S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Y. Hong, and H. Yang, “Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields,” J. Magn. Magn. Mater. 281, 48–52 (2004).
[CrossRef]

C. Y. Hong, C. H. Lin, C. H. Chen, Y. Chiu, S. Yang, H. Horng, and H. Yang, “Field-dependent phase diagram of the structural pattern in a ferrofluid film under perpendicular magnetic field,” J. Magn. Magn. Mater. 226, 1881–1883 (2001).
[CrossRef]

V. Socoliuc, M. Raşa, V. Sofonea, D. Bica, L. Osvath, and D. Luca, “Agglomerate formation in moderately concentrated ferrofluids from static magneto-optical measurements,” J. Magn. Magn. Mater. 191, 241–248 (1999).
[CrossRef]

J. Phys. D

J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, “Field-induced transmission of light in ionic ferrofluids of tunable viscosity,” J. Phys. D 37, 3357–3360 (2004).
[CrossRef]

Microfluid. Nanofluid.

W. Yuan, C. Yin, P. Xiao, X. Wang, J. Sun, S. Huang, X. Chen, and Z. Cao, “Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure,” Microfluid. Nanofluid. 11, 781–785 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

X. Liu, Z. Cao, P. Zhu, and Q. Shen, “Large positive and negative lateral optical beam shift in prism-waveguide coupling system,” Phys. Rev. E 73, 056617 (2006).
[CrossRef]

A. O. Ivanov and S. S. Kantorovich, “Chain aggregate structure and magnetic birefringence in polydisperse ferrofluids,” Phys. Rev. E 70, 021401 (2004).
[CrossRef]

Phys. Rev. Lett.

H. Mamiya, I. Nakatani, and T. Furubayashi, “Phase transitions of iron-nitride magnetic fluids,” Phys. Rev. Lett. 84, 6106–6109 (2000).
[CrossRef]

P. Jund, S. Kim, D. Tománek, and J. Hetherington, “Stability and fragmentation of complex structures in ferrofluids,” Phys. Rev. Lett. 74, 3049–3052 (1995).
[CrossRef]

M. Klokkenburg, B. H. Erné, J. D. Meeldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, “In situ imaging of field-induced hexagonal columns in magnetite ferrofluids,” Phys. Rev. Lett. 97, 185702 (2006).
[CrossRef]

R. Richter and I. Barashenkov, “Two-dimensional solitons on the surface of magnetic fluids,” Phys. Rev. Lett. 94, 184503 (2005).
[CrossRef]

T. Mahr and I. Rehberg, “Parametrically excited surface waves in magnetic fluids: observation of domain structures,” Phys. Rev. Lett. 81, 89–92 (1998).
[CrossRef]

H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface,” Phys. Rev. Lett. 84, 5316–5319 (2000).
[CrossRef]

A. Engel, H. W. Müller, P. Reimann, and A. Jung, “Ferrofluids as thermal ratchets,” Phys. Rev. Lett. 91, 060602 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Configuration of the SMCW structure.

Fig. 2.
Fig. 2.

Linear absorption spectra of dilute ferrofluids with volume concentration of 6.46×103% and (inset) calibration curve of the refractive index of ferrofluids with different volume concentrations (triangles) fitted with a linear function (R2=0.99131).

Fig. 3.
Fig. 3.

Schematic of the experimental setup. The details at the bottom show the Poynting vector and electric displacement of the excited modes when the incident light is TE/TM polarized.

Fig. 4.
Fig. 4.

Normalized reflectivity as a function of applied field for four different cases. The concentration of the ferrofluids measured was 0.053%.

Fig. 5.
Fig. 5.

Normalized reflectivity of ordinary rays versus magnetic field for dilute samples with different concentrations: (a) 0.079%, (b) 0.053%, (c) 0.0395%, (d) 0.0316%, (e) 12.9×103%, (f) 6.46×103%.

Fig. 6.
Fig. 6.

Normalized reflectivity of extraordinary rays versus magnetic field for dilute samples with different concentrations: (a) 0.079%, (b) 0.053%, (c) 0.0395%, (d) 0.0316%, (e) 12.9×103%, (f) 6.46×103%.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R=|r12|2(14Im(β0)Im(Δβrad)[k0NRe(β0)Re(Δβrad)]2+(Im(β0)+Im(Δβrad))2),
Δβrad=κ3r12[r23+r34exp(2iκ3h3)]exp(2iκ2h2)2β0(1κ2+1κ4ih3).
Rmin=|r12|2[14Im(β0)Im(Δβrad)(Im(β0)+Im(Δβrad))2],
Wθ=2[Im(β0)+Im(Δβrad)]k0ε1cosθres.
dθ=1ε1cosθdNn3ε1sinθcosθdn3.
ΔR1RminWθdθdn3Δn3.

Metrics