Abstract

A theoretical model for quantifying the pulse distortion introduced by the stimulated-Brillouin-scattering (SBS)-induced (equivalent) dispersion in a linear Brillouin slow-light system is presented. Based on this model, a linear Brillouin slow-light system employing fast-light propagation for dispersion compensation is analyzed. The results show that the elimination of gain-nonuniformity-induced equivalent group-velocity dispersion can be achieved with the sacrifice of introducing much larger high-order (equivalent) dispersion effects. It is also shown that the simultaneous cancellation of gain-nonuniformity-induced equivalent group-velocity dispersion and third-order dispersion as presented in a recent article is impossible.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
    [CrossRef]
  2. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
    [CrossRef]
  3. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
    [CrossRef]
  4. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications. (CRC, 2009).
  5. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [CrossRef]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  7. A. Zadok, A. Eyal, and M. Yur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
    [CrossRef]
  8. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [CrossRef]
  9. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
    [CrossRef]
  10. M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
    [CrossRef]
  11. T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, “Distortion reduction in cascaded slow light delays,” Electron. Lett. 42, 1110–1111 (2006).
    [CrossRef]
  12. A. Minardo, R. Bernini, and Luigi Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006).
    [CrossRef]
  13. T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
    [CrossRef]
  14. T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
    [CrossRef]
  15. L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” J. Opt. Soc. Am. B 25, 741–746 (2008).
    [CrossRef]
  16. T. Schneider, A. Wiatreck, and R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617–15622 (2008).
    [CrossRef]
  17. S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
    [CrossRef]
  18. A. Wiatrek, R. Henker, S. Preußler, and T. Schneider, “Pulse broadening cancellation in cascaded slow-light delays,” Opt. Express 17, 7586–7591 (2009).
    [CrossRef]
  19. A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Zero-broadening measurement in Brillouin based slow-light delays,” Opt. Express 17, 797–802 (2009).
    [CrossRef]
  20. A. Wiatrek, K. Jamshidi, R. Henker, S. Preußler, and T. Schneider, “Nonlinear Brillouin based slow-light system for almost distortion-free pulse delay,” J. Opt. Soc. Am. B 27, 544–549 (2010).
    [CrossRef]
  21. S. Chin, M. G. Herraez, and L. Thévenaz, “Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element,” Opt. Express 17, 21910–21917 (2009).
    [CrossRef]
  22. Y. Wu, L. Zhan, Y. Wang, S. Luo, and Y. Xia, “Low distortion pulse delay using SBS slow- and fast-light propagation in cascaded optical fibers,” J. Opt. Soc. Am. B 28, 2605–2610 (2011).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic Press, 2007).
  24. Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  25. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
    [CrossRef]
  26. L. L. Yi, Y. Jaouën, W. S. Hu, Y. K. Su, and S. Bigo, “Improved slow-light performance of 10  Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007).
    [CrossRef]
  27. B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
    [CrossRef]
  28. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
    [CrossRef]
  29. Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1974, Chapter 7).
  31. Z. Y. Zhang, X. J. Zhou, R. Liang, and S. H. Shi, “Influence of third-order dispersion on delay performance in broadband Brillouin slow light,” J. Opt. Soc. Am. B 26, 2211–2217 (2009).
    [CrossRef]
  32. M. G. Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
    [CrossRef]

2011

2010

2009

2008

2007

2006

2005

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1974, Chapter 7).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic Press, 2007).

Ammann, M. J.

Bernini, R.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Bigo, S.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Chin, S.

Dawes, A. M.

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Dawes, A. M. C.

Eyal, A.

A. Zadok, A. Eyal, and M. Yur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

Fazal, I.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gauthier, D. J.

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
[CrossRef]

Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef]

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Harada, K.

Henker, R.

Herraez, M. G.

Herráez, M. G.

Hotate, K.

Hu, W. S.

Jamshidi, K.

Jaouën, Y.

Junker, M.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, “Distortion reduction in cascaded slow light delays,” Electron. Lett. 42, 1110–1111 (2006).
[CrossRef]

Kato, T.

Khurgin, J. B.

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications. (CRC, 2009).

Kuramochi, E.

Kurashima, T.

Lauterbach, K. U.

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
[CrossRef]

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, “Distortion reduction in cascaded slow light delays,” Electron. Lett. 42, 1110–1111 (2006).
[CrossRef]

Liang, R.

Liu, Y.

Luo, S.

Matsuda, N.

Minardo, A.

Neifeld, M. A.

Notomi, M.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Pant, R.

Preußler, S.

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

Ren, L. Y.

Sakamoto, T.

Schneider, T.

Schwarzbacher, A. T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Shi, S. H.

Shiraki, K.

Song, K. Y.

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1974, Chapter 7).

Stenner, M. D.

Su, Y. K.

Takesue, H.

Taniyama, H.

Thévenaz, L.

Tomita, Y.

Tucker, R. S.

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications. (CRC, 2009).

Tur, M.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

Wang, S. H.

Wang, Y.

Wiatreck, A.

Wiatrek, A.

Willner, A. E.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Wu, Y.

Xia, Y.

Yamamoto, T.

Yan, L. S.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Yang, J. Y.

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

Yi, L. L.

Yur, M.

Zadok, A.

A. Zadok, A. Eyal, and M. Yur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

Zeni, Luigi

Zhan, L.

Zhang, B.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

Zhang, L.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Zhang, Z. Y.

Zhou, X. J.

Zhu, Z. M.

Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef]

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

Appl. Opt.

Electron. Lett.

T. Schneider, M. Junker, K. U. Lauterbach, and R. Henker, “Distortion reduction in cascaded slow light delays,” Electron. Lett. 42, 1110–1111 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14, 691–705 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19, 462–464 (2007).
[CrossRef]

B. Zhang, L. S. Yan, J. Y. Yang, I. Fazal, and A. E. Willner, “A single slow-light element for independent delay control and synchronization on multiple Gb/s data channels,” IEEE Photon. Technol. Lett. 19, 1081–1083 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

T. Sakamoto, T. Yamamoto, K. Shiraki, and T. Kurashima, “Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb,” Opt. Express 16, 8026–8032 (2008).
[CrossRef]

S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067–8076 (2008).
[CrossRef]

T. Schneider, R. Henker, K. U. Lauterbach, and M. Junker, “Distortion reduction in slow light systems based on stimulated Brillouin scattering,” Opt. Express 16, 8280–8285 (2008).
[CrossRef]

T. Schneider, A. Wiatreck, and R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617–15622 (2008).
[CrossRef]

A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Zero-broadening measurement in Brillouin based slow-light delays,” Opt. Express 17, 797–802 (2009).
[CrossRef]

M. G. Herraez and L. Thévenaz, “Physical limits to broadening compensation in a linear slow light system,” Opt. Express 17, 4732–4739 (2009).
[CrossRef]

A. Wiatrek, R. Henker, S. Preußler, and T. Schneider, “Pulse broadening cancellation in cascaded slow-light delays,” Opt. Express 17, 7586–7591 (2009).
[CrossRef]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995–10002 (2005).
[CrossRef]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
[CrossRef]

A. Minardo, R. Bernini, and Luigi Zeni, “Low distortion Brillouin slow light in optical fibers using AM modulation,” Opt. Express 14, 5866–5876 (2006).
[CrossRef]

N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011).
[CrossRef]

S. Chin, M. G. Herraez, and L. Thévenaz, “Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element,” Opt. Express 17, 21910–21917 (2009).
[CrossRef]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317–8322 (2007).
[CrossRef]

L. L. Yi, Y. Jaouën, W. S. Hu, Y. K. Su, and S. Bigo, “Improved slow-light performance of 10  Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS,” Opt. Express 15, 16972–16979 (2007).
[CrossRef]

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Other

Z. M. Zhu, A. M. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-bandwidth SBS slow light in optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP1.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1974, Chapter 7).

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications. (CRC, 2009).

G. P. Agrawal, Nonlinear Fiber Optics4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Configuration of a linear Brillouin slow-light system employing SBS slow- and fast-light propagation in cascaded optical fibers; (a) experimental configuration, (b) spectral configuration in the slow-light and fast-light stages.

Fig. 2.
Fig. 2.

Calculated normalized (equivalent) dispersion length for (a) a linear Brillouin slow-light system employing SBS slow- and fast-light propagation in cascaded optical fibers, (b) a linear Brillouin slow-light system without dispersion compensation by fast-light propagation.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = exp [ α L 2 + g ( ω ) + i p ( ω ) ] ,
g ( ω ) = ± g 0 L eff 2 + I p ( ω ) 1 + 4 ( ω ω ± ω B ) 2 Γ B 2 d ω
p ( ω ) = ± g 0 L eff 2 + I p ( ω ) 2 ( ω ω ± ω B ) Γ B 1 + 4 ( ω ω ± ω B ) 2 Γ B 2 d ω
H ( Δ ω ) = exp [ α L 2 ± G ± i β 1 Δ ω L ± i m 2 β m m ! Δ ω m L ] ,
β m = { j m ! L d m g ( ω ) d ω m | ω = ω 0 m is even, m ! L d m p ( ω ) d ω m | ω = ω 0 m is odd .
L m = t 0 m | β m | L ( m 2 ) ,
I p n ( ω ) = 2 I n π ξ n exp [ 4 ( ω ω p n ) 2 ξ n 2 ] ,
g ( ω ) + i p ( ω ) = ± π G n Γ B 2 ξ n exp [ ( 2 Δ ω ξ n + i Γ B ξ n ) 2 ] erfc ( Γ B ξ n i 2 Δ ω ξ n ) ,
G = ± G n Γ B π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) 2 ξ n ,
T d = ± 2 G n Γ B [ ξ n Γ B π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) ] ξ n 3 ,
β 2 = ± i 4 G n Γ B [ 2 ξ n Γ B + ( ξ n 2 + 2 Γ B 2 ) π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) ] ξ n 5 L ,
β 3 = ± 16 G n Γ B [ 2 ξ n ( ξ n 2 + Γ B 2 ) + Γ B ( 3 ξ n 2 + 2 Γ B 2 ) π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) ] ξ n 7 L ,
β 4 = i 32 G n Γ B [ ( 3 ξ n 4 + 12 ξ n 2 Γ B 2 + 4 Γ B 4 ) π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) 2 ξ n Γ B ( 5 ξ n 2 + 2 Γ B 2 ) ] ξ n 9 L ,
β 5 = ± 128 G n Γ B [ 8 ξ n 5 + 18 ξ n 3 Γ B 2 + 4 ξ n Γ B 4 Γ B ( 15 ξ n 4 + 20 ξ n 2 Γ B 2 + 4 Γ B 4 ) π erfc ( Γ B ξ n ) exp ( Γ B 2 ξ n 2 ) ] ξ n 11 L .
G = ± G n Γ B π 2 ξ n ,
T d = ± 2 G n Γ B ξ n 2 ,
β 2 = ± i 4 π G n Γ B ξ n 3 L ,
β 3 = 32 G n Γ B ξ n 4 L ,
β 4 = i 96 π G n Γ B ξ n 5 L ,
β 5 = ± 1024 G n Γ B ξ n 6 L .
T d _ net = 2 G n Γ B ξ n 2 ( 1 ξ 2 ξ 1 ) ,
β 3 _ net = 32 G 1 Γ B ξ 1 4 L ( ξ 1 ξ 2 1 ) ,
β 4 _ net = i 96 π G 1 Γ B ξ 1 5 L ( ξ 1 2 ξ 2 2 1 ) ,
β 5 _ net = 1024 G n Γ B ξ n 6 L ( 1 ξ 1 3 ξ 2 3 ) .
β 2 = j 16 g 0 I p Γ B ( Γ B + Δ ω p ) 3 .

Metrics