Abstract

We investigate and simulate the light transmitting and coupling characteristics of surface mode waveguides (SMWs) based on photonic crystals (PhCs) with a triangular lattice of air holes. We demonstrate that surface waves can be efficiently propagated and served as a new kind of high-efficiency single-SMW-based filter with broad bandwidth in the outer space of PhCs. We also explore the highly efficient coupling of hetero-SMWs constructed by cascading different truncated surfaces. The coupling efficiency is insensitive to the interface position.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, 1995).
  2. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).
  3. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
    [CrossRef]
  4. A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679–1683 (2006).
    [CrossRef]
  5. J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
    [CrossRef]
  6. E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
    [CrossRef]
  7. A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
    [CrossRef]
  8. S. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102 (2005).
    [CrossRef]
  9. T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
    [CrossRef]
  10. Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
    [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  12. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
    [CrossRef]
  13. S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  14. E. Popov and S. Enoch, “Photonic crystal surface modes narrow-band filtering,” Opt. Express 13, 5783–5790 (2005).
    [CrossRef]
  15. H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
    [CrossRef]
  16. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
    [CrossRef]
  17. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  19. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
    [CrossRef]

2009 (2)

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[CrossRef]

2008 (1)

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

2007 (2)

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

2006 (3)

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

A. I. Rahachou and I. V. Zozoulenko, “Waveguiding properties of surface states in photonic crystals,” J. Opt. Soc. Am. B 23, 1679–1683 (2006).
[CrossRef]

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

2005 (2)

E. Popov and S. Enoch, “Photonic crystal surface modes narrow-band filtering,” Opt. Express 13, 5783–5790 (2005).
[CrossRef]

S. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

2004 (2)

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

2002 (1)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

2000 (1)

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

Akahane, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Asano, T.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Cheng, T. H.

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

Choi, H. G.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Dai, W.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Dainese, M.

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Enoch, S.

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Fan, S. H.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

Fang, A.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Ho, W. D.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

Hsiao, Y. H.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

Ishizaki, K.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, 1995).

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

Kee, C. S.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Khoo, E. H.

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

Kim, G. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Kim, J. E.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Kim, M. W.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Kim, S. B.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Kim, S. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Koschny, Th.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Lee, P. T.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

Lee, S. G.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Lee, Y. H.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Li, E. P.

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

Li, J.

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

Liu, A. Q.

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

Lu, T. W.

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, 1995).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Noda, S.

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Oh, S. S.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Park, H. G.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Park, H. Y.

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

Pinjala, D.

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

Popov, E.

Qiu, M.

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

S. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rahachou, A. I.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

Song, B. S.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Soukoulis, C. M.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tanaka, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

Tuttle, G.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Wang, B.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, 1995).

Wosinski, L.

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Xiao, S. S.

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

S. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

Yang, J. K.

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

Zhang, L.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Zhang, Z. Y.

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

Zozoulenko, I. V.

Appl. Phys. Lett. (8)

J. K. Yang, S. H. Kim, G. H. Kim, H. G. Park, Y. H. Lee, and S. B. Kim, “Slab-edge modes in two-dimensional photonic crystals,” Appl. Phys. Lett. 84, 3016–3018 (2004).
[CrossRef]

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, “Transmitting light efficiently on photonic crystal surface waveguide bend,” Appl. Phys. Lett. 91, 171109 (2007).
[CrossRef]

A. Q. Liu, E. H. Khoo, T. H. Cheng, E. P. Li, and J. Li, “A frequency-selective circulator via mode coupling between surface waveguide and resonators,” Appl. Phys. Lett. 92, 021119(2008).
[CrossRef]

S. S. Xiao and M. Qiu, “Surface-mode microcavity,” Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

T. W. Lu, Y. H. Hsiao, W. D. Ho, and P. T. Lee, “Photonic crystal heteroslab-edge microcavity with high quality factor surface mode for index sensing,” Appl. Phys. Lett. 94, 141110 (2009).
[CrossRef]

Z. Y. Zhang, M. Dainese, L. Wosinski, S. S. Xiao, and M. Qiu, “Optical filter based on two-dimensional photonic crystal surface-mode cavity in amorphous silicon-on-silica structure,” Appl. Phys. Lett. 90, 041108 (2007).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett. 85, 4591–4593 (2004).
[CrossRef]

J. Appl. Phys. (1)

H. G. Choi, S. S. Oh, S. G. Lee, M. W. Kim, J. E. Kim, H. Y. Park, and C. S. Kee, “Coupling characteristics of surface modes in truncated two-dimensional photonic crystals,” J. Appl. Phys. 100, 123105 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

S. G. Johnson, P. R. Villeneuve, S. H. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Electromagnetic Bloch wave at the surface of a photonic crystal,” Phys. Rev. B 44, 10961–10964 (1991).

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, “Surface waves in photonic crystal slabs,” Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Molding the Flow of Light (Princeton University, 1995).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The definition of termination factor τ in PhC of air holes. h is the distance from the center of the air holes of the outmost layer to a PhC edge.

Fig. 2.
Fig. 2.

(a) Dispersion diagram of the TE surface modes with five representative termination factor τ values. The straight line indicates the light line. (b) Transmission spectrum of single-SMW filters for five different τ values.

Fig. 3.
Fig. 3.

Steady-state magnetic field patterns at (a) a/λ=0.28 and (b) a/λ=0.33 in a SMW filter with τ=0.1.

Fig. 4.
Fig. 4.

(a) Schematic of a large coupling structure by cascading SMW-I with termination factor τ1 and SMW-II with termination factor (τ1<τ2). Two monitors are, respectively, located at the points of P and Q to detect the incident and transmission fields. The length H1 of SMW-I and the length H2 of SMW-II are set to be 200a and 100a, respectively. (b) Transmission spectrum of four hetero-SMWs constructed by a same SMW-I with τ1=0 and four different SMW-II with τ2=0.1, 0.2, 0.3, 0.4, respectively.

Fig. 5.
Fig. 5.

Transverse profiles of magnetic field intensity for surface modes at normalized frequency a/λ=0.27 in SMW with five different τ2=0.1, 0.2, 0.3 and 0.4, respectively.

Fig. 6.
Fig. 6.

Steady-state magnetic field patterns at a/λ=0.28 in (a) the proposed hetero-SMW structure (τ1=0, τ2=0.3) and (b) an optimized hetero-SMW structure (τ1=0, τ2=0.3) for N=20.

Fig. 7.
Fig. 7.

(a) Definition of the interface factor β. (b) Transmission spectrum of hetero-SMWs (τ1=0, τ2=0.3) for representative β values within a period.

Fig. 8.
Fig. 8.

(a) Scheme of the optimized hetero-SMWs. The tapering region is formed by gradually shrinking air holes at the PhC edge. The number of periods of the tapering region is denoted as N. (b) Coupling efficiency of hetero-SMWs (τ1=0, τ2=0.3) with various N values.

Metrics