Abstract

We report on the implementation of a dynamically configurable, servomotor-controlled, permanent magnet Zeeman slower for quantum optics experiments with ultracold atoms and molecules. This atom slower allows for switching between magnetic field profiles that are designed for different atomic species. Additionally, through feedback on the atom trapping rate, we demonstrate that computer-controlled genetic optimization algorithms applied to the magnet positions can be used in situ to obtain field profiles that maximize the trapping rate for any given experimental conditions. The device is lightweight, remotely controlled, and consumes no power in steady state; it is a step toward automated control of quantum optics experiments.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
    [CrossRef]
  2. C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
    [CrossRef]
  3. V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
    [CrossRef]
  4. C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
    [CrossRef]
  5. Y. B. Ovchinnikov, “A permanent Zeeman slower for Sr atomic clock,” Eur. J. Phys. Spec. Top. 163, 95–100 (2008).
    [CrossRef]
  6. P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
    [CrossRef]
  7. S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.
  8. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
    [CrossRef]
  9. V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
    [CrossRef]
  10. http://atta.phys.columbia.edu .
  11. LabExe Program for Experimental Research, downloadable from http://allmyapps.com/apps/labexe . Video demonstration: http://vimeo.com/31039111 .
  12. Optimization API used: NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt , and Evolving Objects, http://eodev.sourceforge.net .

2011 (2)

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

2009 (1)

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

2008 (1)

Y. B. Ovchinnikov, “A permanent Zeeman slower for Sr atomic clock,” Eur. J. Phys. Spec. Top. 163, 95–100 (2008).
[CrossRef]

2004 (1)

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

1999 (1)

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
[CrossRef]

1998 (1)

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

1989 (1)

V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
[CrossRef]

Aspect, A.

V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
[CrossRef]

Bagayev, S. N.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Bagnato, V. S.

V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
[CrossRef]

Baldwin, K. G. H.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

Bartoszek-Bober, D.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Carr, L. D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Carraz, O.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Cheiney, P.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Dall, R. G.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

Dedman, C. J.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

DeMille, D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Fabre, C. M.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Faure, S.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Gattobigio, G. L.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Görlitz, A.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Guéry-Odelin, D.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Hanna, T. M.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

Huntermann, N.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Krems, R. V.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Lahaye, T.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Lemonde, P.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Mathevet, R.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Mehlstäubler, T. E.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Nes, J.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

Nevsky, A.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Okhapkin, M. V.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, “A permanent Zeeman slower for Sr atomic clock,” Eur. J. Phys. Spec. Top. 163, 95–100 (2008).
[CrossRef]

Peik, E.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Phillips, W. D.

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

Poli, N.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Pritchard, D. E.

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
[CrossRef]

Riehle, F.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Salomon, C.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Schiller, S.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Sterr, U.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Taichenachev, A. V.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Tamm, C.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Tino, G. M.

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

Truscott, A. G.

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

Vermersch, F.

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Wieman, C. E.

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
[CrossRef]

Wineland, D. J.

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
[CrossRef]

Ye, J.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Yudin, V. I.

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Zilio, S. C.

V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
[CrossRef]

Eur. J. Phys. Spec. Top. (1)

Y. B. Ovchinnikov, “A permanent Zeeman slower for Sr atomic clock,” Eur. J. Phys. Spec. Top. 163, 95–100 (2008).
[CrossRef]

New J. Phys. (1)

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Opt. Commun. (1)

V. S. Bagnato, A. Aspect, and S. C. Zilio, “Study of laser deceleration of an atomic beam by monitoring the fluorescence along the deceleration path,” Opt. Commun. 72, 76–81 (1989).
[CrossRef]

Phys. Rev. Lett. (1)

V. I. Yudin, A. V. Taichenachev, M. V. Okhapkin, S. N. Bagayev, C. Tamm, E. Peik, N. Huntermann, T. E. Mehlstäubler, and F. Riehle, “Atomic clocks with suppressed blackbody radiation shift,” Phys. Rev. Lett. 107, 030801 (2011).
[CrossRef]

Rev. Mod. Phys. (2)

W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998).
[CrossRef]

C. E. Wieman, D. E. Pritchard, and D. J. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71, S253–S262 (1999).
[CrossRef]

Rev. Sci. Instrum. (2)

C. J. Dedman, J. Nes, T. M. Hanna, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott, “Optimum design and construction of a Zeeman slower for use with a magneto-optic trap,” Rev. Sci. Instrum. 75, 5136–5142 (2004).
[CrossRef]

P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C. M. Fabre, G. L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet, “A Zeeman slower design with permanent magnets in a Halbach configuration,” Rev. Sci. Instrum. 82, 063115 (2011).
[CrossRef]

Other (4)

S. Schiller, G. M. Tino, P. Lemonde, U. Sterr, A. Görlitz, N. Poli, A. Nevsky, and C. Salomon, the SOC team, “The Space Optical Clock project,” presented at the International Conference on Space Optics, Rhodes, Greece, October4–82010.

http://atta.phys.columbia.edu .

LabExe Program for Experimental Research, downloadable from http://allmyapps.com/apps/labexe . Video demonstration: http://vimeo.com/31039111 .

Optimization API used: NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt , and Evolving Objects, http://eodev.sourceforge.net .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) View of the ZS (lid off), including the 16 pairs of magnets and servomotors surrounding the atomic beam vacuum section. (b) Close-up rendering of servomotor actuation.

Fig. 2.
Fig. 2.

Magnetic field profiles measured along the axis of the ZS. A typical field profile for the slowing of strontium is represented by the gray line. The dashed line corresponds to a fit using a calculated field profile. The dotted line represents that same profile, but (a) twice weaker at any point of the slower, (b) longitudinally compressed to half-length of the ZS. The red lines are the measured profiles obtained by rearranging the magnets using the servomotors; the switching time is consistently within 0.5 s.

Fig. 3.
Fig. 3.

Representation of the best capture rate during typical optimization runs as a function of run time. The vertical axis scale is labeled using an extrapolated atom loading rate in the presence of repumpers, which is a more conventional measure. Every second, the routine probes a new configuration of the 16 servomotor pair positions. The gray lines correspond to runs of a local search Nelder–Mead simplex algorithm. The colored lines correspond to a global search using a genetic algorithm. The dotted line depicts a genetic optimization run by allowing the 32 servomotors to move independently, i.e., by removing pair symmetry about the ZS axis.

Fig. 4.
Fig. 4.

Calculated magnetic field profiles along the ZS for the initial field, locally optimized field, and genetically optimized field. The fields were calculated using final magnet positions and modeling the slower with a corresponding array of magnetic dipoles.

Fig. 5.
Fig. 5.

Representation of typical atomic trajectories in one-dimensional phase space (z,v) given a magnetic profile B(z) corresponding to (a) the initial profile (configuration A), (b) the profile obtained after running a local optimization routine starting from the initial profile, and (c) the profile optimized through the use of a genetic algorithm. The gray zones correspond to the region in which the atoms experience at least a tenth of the maximal radiation pressure force kΓ/2. The atoms enter the ZS at z0.0m, and the position of the MOT is at z0.5m.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F(v,z)=kΓ2s0(z)1+s0(z)+4(δ0+kv(z)μB(z)/)2/Γ2,

Metrics