Abstract

We present a detailed analysis of the optical field dynamics in a Fourier domain mode-locked (FDML) laser. We employ a numerical simulation based on the FDML evolution equation, describing the propagation of the optical light field. The temporal evolution of the instantaneous power spectrum at different points in the laser cavity is investigated. The results are carefully validated against experimental data, yielding good agreement. Deeper insight is gained into the role of the physical effects governing FDML dynamics, such as gain recovery and linewidth enhancement in the semiconductor optical amplifier, dispersion and self-phase modulation in the optical fiber, and the sweep filter action.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. S. Yun, G. Tearney, Johannes de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [CrossRef]
  3. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
    [CrossRef]
  4. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [CrossRef]
  5. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [CrossRef]
  6. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000  lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef]
  7. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
    [CrossRef]
  8. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
    [CrossRef]
  9. D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
    [CrossRef]
  10. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [CrossRef]
  11. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).
  12. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
    [CrossRef]
  13. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
    [CrossRef]
  14. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
    [CrossRef]
  15. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
    [CrossRef]
  16. K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
  17. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16, 14095–14105 (2008).
    [CrossRef]
  18. Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
    [CrossRef]
  19. M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16, 3727–3737 (2008).
    [CrossRef]
  20. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).
    [CrossRef]
  21. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).
  22. Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
    [CrossRef]
  23. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33, 1395–1397 (2008).
    [CrossRef]
  24. L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
    [CrossRef]
  25. B. C. Lee and M. Y. Jeon, “Remote fiber sensor based on cascaded Fourier domain mode-locked laser,” Opt. Commun. 284, 4607–4610 (2011).
    [CrossRef]
  26. B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010).
    [CrossRef]
  27. E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011).
    [CrossRef]
  28. M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.
  29. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
    [CrossRef]
  30. C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17, 18794–18807 (2009).
    [CrossRef]
  31. C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics 4, 552–558 (2011).
    [CrossRef]
  32. T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
    [CrossRef]
  33. V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).
  34. G. Overton, “760 kHz OCT scanning possible with MEMS-tunable VCSEL,” Laser Focus World 47, 15 (2011).
  35. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400  kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35, 2919–2921 (2010).
  36. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
    [CrossRef]
  37. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
    [CrossRef]
  38. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35, 3733–3735 (2010).
  39. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  40. C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
    [CrossRef]
  41. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31, 760–762 (2006).
    [CrossRef]

2011

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

B. C. Lee and M. Y. Jeon, “Remote fiber sensor based on cascaded Fourier domain mode-locked laser,” Opt. Commun. 284, 4607–4610 (2011).
[CrossRef]

E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011).
[CrossRef]

C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics 4, 552–558 (2011).
[CrossRef]

G. Overton, “760 kHz OCT scanning possible with MEMS-tunable VCSEL,” Laser Focus World 47, 15 (2011).

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[CrossRef]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[CrossRef]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[CrossRef]

2010

2009

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17, 18794–18807 (2009).
[CrossRef]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
[CrossRef]

2008

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).
[CrossRef]

M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16, 3727–3737 (2008).
[CrossRef]

D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33, 1395–1397 (2008).
[CrossRef]

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16, 14095–14105 (2008).
[CrossRef]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

2007

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

2006

2005

2003

1995

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1982

C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Adler, D. C.

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000  lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

An, X.

Bernacil, M.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

Biedermann, B.

Biedermann, B. R.

Bilenca, A.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Cable, A.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Cable, A. E.

Caswell, A. W.

Chang, F. Y.

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

Chang, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

Chang, T. C.

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chang-Hasnain, C. J.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

Chen, D.

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33, 1395–1397 (2008).
[CrossRef]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Chen, Y. L.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Chen, Z.

Chen, Z. P.

Cimalla, P.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Cole, G.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

de Boer, Johannes

DeKelaita, A.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

Delfyett, P. J.

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

Derickson, D.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

Duker, J. S.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Eigenwillig, C. M.

Eng, L.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Flueraru, C.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

Fu, J.

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

Fujimoto, J. G.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000  lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Fujimura, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Gaertner, M.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gu, X.

He, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Heim, P.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Herold, R. E.

Hirata, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huber, R.

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[CrossRef]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[CrossRef]

C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics 4, 552–558 (2011).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[CrossRef]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35, 3733–3735 (2010).

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
[CrossRef]

C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17, 18794–18807 (2009).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000  lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

Huber, R. A.

Iftimia, N.

Jayaraman, V.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Jeon, M. Y.

Jeong, M. Y.

Jiang, J.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Jiang, J. Y.

Jirauschek, C.

Jung, E. J.

B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010).
[CrossRef]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).

Jung, W.

Kanbara, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Kim, C. S.

B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010).
[CrossRef]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).

Kim, D. Y.

Kim, M. K.

Kim, Y. P.

E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011).
[CrossRef]

Kirsten, L.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Klein, T.

Koch, E.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Kranendonk, L. A.

Lee, B. C.

B. C. Lee and M. Y. Jeon, “Remote fiber sensor based on cascaded Fourier domain mode-locked laser,” Opt. Commun. 284, 4607–4610 (2011).
[CrossRef]

B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010).
[CrossRef]

Lee, E. J.

E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011).
[CrossRef]

Lee, K. S.

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

Li, G. S.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

Li, H.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, G. Y.

Liu, H. L.

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

Liu, W.

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

Maher, B.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

Mao, Y.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

Mariampillai, A.

Meemon, P.

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

Meissner, S.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Moon, S.

Munce, N. R.

Nishiyama, N.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Noda, R.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

O’Connor, S.

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

Oh, W.-Y.

Okura, Y.

Ooyama, M.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Overton, G.

G. Overton, “760 kHz OCT scanning possible with MEMS-tunable VCSEL,” Laser Focus World 47, 15 (2011).

Potsaid, B.

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Rolland, J. P.

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

Saitou, H.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Sanders, S. T.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Schumann, J. S.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Sherif, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

Shishkov, M.

Shu, C.

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Taira, K.

Tearney, G.

Tearney, G. J.

Tezuka, S. I.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Todor, S.

Trepanier, F.

Tsai, M. T.

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

Urata, Y.

Vail, E. C.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

Vakoc, B. J.

Vitkin, I. A.

Walther, J.

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Wang, Q.

Wang, Y.

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

Watanabe, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Wieser, W.

Wojtkowski, M.

Wu, M. S.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

Yang, C. H.

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

Yano, T.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

Yun, S.

Yun, S. H.

Zhang, J.

Electron. Lett.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Chang-Hasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31, 228–229 (1995).
[CrossRef]

IEEE J. Quantum Electron.

T. Yano, H. Saitou, N. Kanbara, R. Noda, S. I. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500 kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE J. Quantum Electron. 15, 528–534 (2009).
[CrossRef]

C. H. Henry, “Theory of the linewidth of semiconductor-lasers,” IEEE J. Quantum Electron. 18, 259–264 (1982).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schumann, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Investig. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef]

J. Biophotonics

C. M. Eigenwillig, T. Klein, W. Wieser, B. R. Biedermann, and R. Huber, “Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm,” J. Biophotonics 4, 552–558 (2011).
[CrossRef]

Laser Focus World

G. Overton, “760 kHz OCT scanning possible with MEMS-tunable VCSEL,” Laser Focus World 47, 15 (2011).

Laser Phys.

Y. Wang, W. Liu, J. Fu, and D. Chen, “Quasi-distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser,” Laser Phys. 19, 450–454 (2009).
[CrossRef]

Meas. Sci. Technol.

B. C. Lee, E. J. Jung, C. S. Kim, and M. Y. Jeon, “Dynamic and static strain fiber Bragg grating sensor interrogation with a 1.3 mu m Fourier domain mode-locked wavelength-swept laser,” Meas. Sci. Technol. 21, 094008 (2010).
[CrossRef]

Nat. Photon.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1, 709–716 (2007).
[CrossRef]

Opt. Commun.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88–92 (2009).
[CrossRef]

B. C. Lee and M. Y. Jeon, “Remote fiber sensor based on cascaded Fourier domain mode-locked laser,” Opt. Commun. 284, 4607–4610 (2011).
[CrossRef]

Opt. Eng.

E. J. Lee and Y. P. Kim, “Swept source optical coherence tomography with external clocking using voltage controlled oscillator,” Opt. Eng. 50, 053205 (2011).
[CrossRef]

Opt. Express

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[CrossRef]

S. Yun, G. Tearney, Johannes de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
[CrossRef]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[CrossRef]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13, 10523–10538 (2005).

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15, 15115–15128 (2007).
[CrossRef]

M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).
[CrossRef]

M. Y. Jeon, J. Zhang, and Z. P. Chen, “Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging,” Opt. Express 16, 3727–3737 (2008).
[CrossRef]

G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express 16, 14095–14105 (2008).
[CrossRef]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16, 16552–16560 (2008).

C. M. Eigenwillig, B. R. Biedermann, W. Wieser, and R. Huber, “Wavelength swept amplified spontaneous emission source,” Opt. Express 17, 18794–18807 (2009).
[CrossRef]

C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express 17, 24013–24019 (2009).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
[CrossRef]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19, 3044–3062 (2011).
[CrossRef]

S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express 19, 8802–8807 (2011).
[CrossRef]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[CrossRef]

Opt. Lett.

Photon. Sens.

K. Hsu, P. Meemon, K. S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).

Proc. SPIE

D. Derickson, M. Bernacil, A. DeKelaita, B. Maher, and S. O’Connor, “SGDBR single-chip wavelength tunable lasers for swept source OCT,” Proc. SPIE 6847, 68472P (2008).
[CrossRef]

L. Kirsten, J. Walther, P. Cimalla, M. Gaertner, S. Meissner, and E. Koch, “Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser,” Proc. SPIE 8091, 809118 (2011).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other

M. T. Tsai, H. L. Liu, F. Y. Chang, T. C. Chang, and C. H. Yang, “Three-dimensional and en-face optical coherence tomography based on a Fourier domain mode locking laser for dermatology study,” in First International Symposium on Bioengineering(Research Publishing Services, 2011), pp. 88–95.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

V. Jayaraman, J. Jiang, H. Li, P. Heim, G. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-Mode 1310 nm MEMS-tunable VCSELs with >100  nm tuning rate,” in Quantum Electronics and Laser Science Conference (Optical Society of America, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Setup for the measurement of the instantaneous linewidth using an electro-optical modulator (EOM) and an optical spectrum analyzer. (b) FDML laser setup with three outcouplers (numbered 1 to 3), where light is extracted for the linewidth analysis.

Fig. 2.
Fig. 2.

(a) Time dependent sweep filter center frequency and wavelength and (b) simulated power over time.

Fig. 3.
Fig. 3.

Instantaneous power spectrum at t=5.3μs after the SOA for the simulation with gating considered (dotted curve), for the simulation without gating (dashed curve), and as obtained from experiment (dash-dotted curve). The sweep filter transmission (solid curve) is shown for comparison.

Fig. 4.
Fig. 4.

Simulated temporal evolution of the instantaneous power spectrum after the SOA over a full round trip without gating included.

Fig. 5.
Fig. 5.

(a) Gaussian input pulse and the corresponding averaged power obtained from Eq. (7) as a function of time. (b) Power spectrum of the Gaussian input pulse and output power spectrum after the gain medium.

Fig. 6.
Fig. 6.

Temporal dependence of the frequency shift caused by the fiber dispersion.

Fig. 7.
Fig. 7.

Power spectrum of the Gaussian input pulse and output power spectrum after self-phase modulation.

Fig. 8.
Fig. 8.

Power spectrum of the Gaussian input pulse and output power spectrum after the sweep filter. The sweep filter transmission (dotted curve) is shown for comparison.

Fig. 9.
Fig. 9.

Simulation results for the temporal evolution of (a) mean frequency and (b) linewidth.

Fig. 10.
Fig. 10.

Simulated and measured temporal evolution of the linewidth. Shown are simulation results with gating considered (dashed curve) and without gating (dotted curve), as well as experimental data (crosses).

Fig. 11.
Fig. 11.

Experimental (dashed) and theoretical (dotted) instantaneous power spectra after (a) the SOA, (b) the SMF, and (c) the sweep filter at t=5.3μs. The sweep filter transmission (solid curve) is shown for comparison.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

zu=[g(ω0)(1iα)a(ω0)+iω02D2+iω03D3iD2t2+iγ|u|2as(it)]u,
u=Aexp(itω0(t)dt).
t0tω0(t)dt=ω0(t0)(tt0)+12ω0t|t=t0(tt0)2+,
A=u·exp((tt0)22σ2i2ω0t|t=t0(tt0)2),
u=u0G(1iα)/2,
G(t)=G0[ω0(t)]1+Pav(t)/Psat[ω0(t)].
Pav(t)=τc1tP(τ)exp[(τt)/τc]dτ.
u(z+L)=u(z)exp{i[ω02(t)D2+ω03(t)D3]L}=u(z)exp[iϕ(t)].
ϕ(t)ϕ(t0)+tϕ(t0)(tt0)+
δf=tϕ(t0)/(2π)=12π[2D2ω0(t0)+3D3ω02(t0)]tω0(t0)L
u(z+L)=u(z)exp(iγ|u(z)|2L).
U(ω)=ts(ω)U0(ω).
ts(ω)=exp[as(ω)dz]=Tmax1/2/(12iω/Δ).

Metrics