Abstract

Laser-induced photoionization and fluorescence signals were simultaneously observed in atomic uranium using a single Nd:YAG-pumped dye laser. These signals were recorded in two specific cases. In the first case, the dye laser was resonant to the first-step transition (016900.38cm1). In the second case, the laser was near-resonant to the first-step transition with a slight detuning (0.15cm1) so that it became two-photon resonant at 33801.06cm1. The uranium atoms in the ground state were ionized by a single-color, three-photon photoionization technique resulting in the photoionization signal, and the fluorescence signal was simultaneously obtained from the first excited state involved in the photoionization process. The photoionization and the fluorescence signals in the above-mentioned cases were also estimated theoretically for several values of the photoionization cross section for the transition between the second excited state at 33801.06cm1 and the autoionization state at 50701.59cm1 using density matrix formalism. From the comparison of theoretically calculated ratios of fluorescence signals in the two specific cases with the experimentally obtained values, the photoionization cross section for the 33801.0650701.59cm1 transition has been obtained, which is found to be (5±1)×1016cm2.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).
  2. G. S. Hurst and M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, 1988).
  3. L. R. Carlson, J. A. Paisner, E. F. Worden, S. A. Johnson, C. A. May, and R. W. Solarz, “Radiative lifetimes, absorption cross sections, and the observation of new high-lying odd levels of U238 using multistep laser photoionization,” J. Opt. Soc. Am. 66, 846–853 (1976).
    [CrossRef]
  4. M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).
  5. V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
    [CrossRef]
  6. V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
    [CrossRef]
  7. B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
    [CrossRef]
  8. V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
    [CrossRef]
  9. K. Dasgupta, K. G. Manohar, P. N. Bajaj, B. M. Suri, R. K. Talukdar, P. K. Chakraborti, and P. R. K. Rao “Understanding single-color multiphoton ionization spectra by pump probe technique,” J. Opt. Soc. Am. B 5, 1257–1260 (1988).
    [CrossRef]
  10. K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
    [CrossRef]
  11. M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
    [CrossRef]
  12. M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” J. Phys. B 30, 4193–4206 (1997).
    [CrossRef]
  13. M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
    [CrossRef]
  14. H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).
  15. E. Miron, R. David, G. Erez, S. Lavi, and L. A. Levin, “Laser spectroscopy of U I using stepwise excitation and fluorescence detection,” J. Opt. Soc. Am. 69, 256–264 (1979).
    [CrossRef]
  16. A. K. Pulhani, M. L. Shah, V. Dev, and B. M. Suri, “High lying even-parity excited levels of atomic samarium,” J. Opt. Soc. Am. B 22, 1117–1122 (2005).
    [CrossRef]
  17. M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Measurements of radiative lifetimes, branching fractions, and absolute transition probabilities in atomic samarium using laser-induced fluorescence,” J. Opt. Soc. Am. B 27, 423–431 (2010).
    [CrossRef]
  18. Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).
  19. M. Broglia, F. Catoni, and P Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow-cathode lamp,” J. Opt. Soc. Am. B 2, 570–573 (1985).
    [CrossRef]
  20. C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
    [CrossRef]
  21. K. W. McLaughlin and D. M. Duqutte, “Absolute photoionization cross section of excited titanium,” J. Opt. Soc. Am. B 9, 1953–1958 (1992).
    [CrossRef]
  22. B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, 1990).
  23. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).
  24. B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
    [CrossRef]
  25. G. P. Gupta, A. K. Pulhani, and B. M. Suri, “Comparison of La138: La139-isotope-ratio-enhancement calculations by use of spectral-simulation and density-matrix methods,” J. Opt. Soc. Am. B 21, 436–441 (2004).
    [CrossRef]
  26. G. P. Gupta and B. M. Suri, “Effects of laser linewidth on an effective method for excitation in three-level atomic systems by two optimally detuned counterpropagating pulsed lasers,” Phys. Rev. A 77, 023419 (2008).
    [CrossRef]
  27. L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications (Dekker, 1987).
  28. T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
    [CrossRef]
  29. V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
    [CrossRef]
  30. S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
    [CrossRef]

2010

2008

G. P. Gupta and B. M. Suri, “Effects of laser linewidth on an effective method for excitation in three-level atomic systems by two optimally detuned counterpropagating pulsed lasers,” Phys. Rev. A 77, 023419 (2008).
[CrossRef]

2005

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

A. K. Pulhani, M. L. Shah, V. Dev, and B. M. Suri, “High lying even-parity excited levels of atomic samarium,” J. Opt. Soc. Am. B 22, 1117–1122 (2005).
[CrossRef]

2004

2000

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

1999

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

1998

S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
[CrossRef]

1997

M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” J. Phys. B 30, 4193–4206 (1997).
[CrossRef]

1996

M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
[CrossRef]

1994

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

1992

T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
[CrossRef]

K. W. McLaughlin and D. M. Duqutte, “Absolute photoionization cross section of excited titanium,” J. Opt. Soc. Am. B 9, 1953–1958 (1992).
[CrossRef]

1989

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

1988

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

K. Dasgupta, K. G. Manohar, P. N. Bajaj, B. M. Suri, R. K. Talukdar, P. K. Chakraborti, and P. R. K. Rao “Understanding single-color multiphoton ionization spectra by pump probe technique,” J. Opt. Soc. Am. B 5, 1257–1260 (1988).
[CrossRef]

1987

B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

1985

1983

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).

1979

1976

Arisawa, T.

M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
[CrossRef]

Asano, T.

T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
[CrossRef]

Babin, F.

S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
[CrossRef]

Bajaj, P. N.

Broglia, M.

M. Broglia, F. Catoni, and P Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow-cathode lamp,” J. Opt. Soc. Am. B 2, 570–573 (1985).
[CrossRef]

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).

Burkhart, C. E.

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

Bushaw, B. A.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

Carlson, L. R.

Catoni, F.

M. Broglia, F. Catoni, and P Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow-cathode lamp,” J. Opt. Soc. Am. B 2, 570–573 (1985).
[CrossRef]

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).

Chakraborti, P. K.

Charaborti, P. K.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

Dasgupta, K.

David, R.

Dev, V.

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

A. K. Pulhani, M. L. Shah, V. Dev, and B. M. Suri, “High lying even-parity excited levels of atomic samarium,” J. Opt. Soc. Am. B 22, 1117–1122 (2005).
[CrossRef]

Duqutte, D. M.

Eberly, J. H.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Erez, G.

Gagné, J.-M.

S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
[CrossRef]

Gupta, G. P.

Hurst, G. S.

G. S. Hurst and M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, 1988).

Hyuamin, P.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Johnson, S. A.

Jonghoon, Y.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Jongmin, L.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Kapoor, R.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

Kim, J. T.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Kluge, H. J.

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

Lal, B.

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

Lavi, S.

Letokhov, V. S.

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

Leventhal, J. J.

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

Lévesque, S.

S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
[CrossRef]

Levin, L. A.

Libbert, J. L.

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

Mago, V. K.

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

Manohar, K. G.

May, C. A.

McLaughlin, K. W.

Milonni, P. W.

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

Miron, E.

Miyabe, M.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” J. Phys. B 30, 4193–4206 (1997).
[CrossRef]

M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
[CrossRef]

Nortershauser, W.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Oba, M.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

Paisner, J. A.

Passler, G.

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

Payne, M. G.

G. S. Hurst and M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, 1988).

Pulhani, A. K.

Radziemski, L.

L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications (Dekker, 1987).

Rao, P. R. K.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

K. Dasgupta, K. G. Manohar, P. N. Bajaj, B. M. Suri, R. K. Talukdar, P. K. Chakraborti, and P. R. K. Rao “Understanding single-color multiphoton ionization spectra by pump probe technique,” J. Opt. Soc. Am. B 5, 1257–1260 (1988).
[CrossRef]

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

Ray, A. K.

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

Shah, M. L.

Sharma, S. D.

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, 1990).

Sipyo, R.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Solarz, R.

L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications (Dekker, 1987).

Solarz, R. W.

Suri, B. M.

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Measurements of radiative lifetimes, branching fractions, and absolute transition probabilities in atomic samarium using laser-induced fluorescence,” J. Opt. Soc. Am. B 27, 423–431 (2010).
[CrossRef]

G. P. Gupta and B. M. Suri, “Effects of laser linewidth on an effective method for excitation in three-level atomic systems by two optimally detuned counterpropagating pulsed lasers,” Phys. Rev. A 77, 023419 (2008).
[CrossRef]

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

A. K. Pulhani, M. L. Shah, V. Dev, and B. M. Suri, “High lying even-parity excited levels of atomic samarium,” J. Opt. Soc. Am. B 22, 1117–1122 (2005).
[CrossRef]

G. P. Gupta, A. K. Pulhani, and B. M. Suri, “Comparison of La138: La139-isotope-ratio-enhancement calculations by use of spectral-simulation and density-matrix methods,” J. Opt. Soc. Am. B 21, 436–441 (2004).
[CrossRef]

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

K. Dasgupta, K. G. Manohar, P. N. Bajaj, B. M. Suri, R. K. Talukdar, P. K. Chakraborti, and P. R. K. Rao “Understanding single-color multiphoton ionization spectra by pump probe technique,” J. Opt. Soc. Am. B 5, 1257–1260 (1988).
[CrossRef]

B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
[CrossRef]

Suzuki, K.

T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
[CrossRef]

Talukdar, R.

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
[CrossRef]

Talukdar, R. K.

Trautmann, N.

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

Uetake, N.

T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
[CrossRef]

Wakaida, I.

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” J. Phys. B 30, 4193–4206 (1997).
[CrossRef]

M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
[CrossRef]

Wendt, G.

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

Wendt, K.

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Worden, E. F.

Xu, J.

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

Yongjoo, R.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

Zampetti, P

Zampetti, P.

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).

Appl. Phys. B

K. G. Manohar, P. N. Bajaj, B. M. Suri, R. Talukdar, K. Dasgupta, P. K. Charaborti, and P. R. K. Rao, “Observation of autoionization resonances in uranium by step-wise laser photoionization,” Appl. Phys. B 48, 525–530 (1989).
[CrossRef]

V. Dev, M. L. Shah, A. K. Pulhani, and B. M. Suri, “Two-color photoionization spectroscopy of uranium in a U Ne hollow cathode discharge tube,” Appl. Phys. B 80, 587–594 (2005).
[CrossRef]

Can. J. Phys.

S. Lévesque, J.-M. Gagné, and F. Babin, “Single-color photoionization optogalvanic spectroscopy in U-Xe and U-Ne hollow-cathode discharges,” Can. J. Phys. 76, 207–244 (1998).
[CrossRef]

Fresenius’ J. Anal. Chem.

H. J. Kluge, B. A. Bushaw, G. Passler, G. Wendt, and N. Trautmann, “Resonance ionization spectroscopy for trace analysis and fundamental research,” Fresenius’ J. Anal. Chem. 350, 323–329 (1994).

J. Korean Phys. Soc.

Y. Jonghoon, J. T. Kim, P. Hyuamin, R. Sipyo, R. Yongjoo, and L. Jongmin, “Monitoring of the gadolinium photoionization process by using fluorescence detection,” J. Korean Phys. Soc. 37, 707–712 (2000).

J. Nucl. Sci. Technol.

T. Asano, N. Uetake, and K. Suzuki, “Mean atomic velocities of uranium, titanium and copper during electron beam evaporation,” J. Nucl. Sci. Technol. 29, 1194–1200 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

G. P. Gupta, A. K. Pulhani, and B. M. Suri, “Comparison of La138: La139-isotope-ratio-enhancement calculations by use of spectral-simulation and density-matrix methods,” J. Opt. Soc. Am. B 21, 436–441 (2004).
[CrossRef]

A. K. Pulhani, M. L. Shah, V. Dev, and B. M. Suri, “High lying even-parity excited levels of atomic samarium,” J. Opt. Soc. Am. B 22, 1117–1122 (2005).
[CrossRef]

M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Measurements of radiative lifetimes, branching fractions, and absolute transition probabilities in atomic samarium using laser-induced fluorescence,” J. Opt. Soc. Am. B 27, 423–431 (2010).
[CrossRef]

M. Broglia, F. Catoni, and P Zampetti, “Simultaneous detection of optogalvanic and fluorescence signals in a uranium hollow-cathode lamp,” J. Opt. Soc. Am. B 2, 570–573 (1985).
[CrossRef]

B. M. Suri, K. Dasgupta, P. N. Bajaj, K. G. Manohar, R. Talukdar, P. K. Chakraborti, and P. R. K. Rao, “Observation of new high-lying odd levels of U I in a two-color multiphotonionization spectrum,” J. Opt. Soc. Am. B 4, 1835–1836 (1987).
[CrossRef]

K. Dasgupta, K. G. Manohar, P. N. Bajaj, B. M. Suri, R. K. Talukdar, P. K. Chakraborti, and P. R. K. Rao “Understanding single-color multiphoton ionization spectra by pump probe technique,” J. Opt. Soc. Am. B 5, 1257–1260 (1988).
[CrossRef]

K. W. McLaughlin and D. M. Duqutte, “Absolute photoionization cross section of excited titanium,” J. Opt. Soc. Am. B 9, 1953–1958 (1992).
[CrossRef]

J. Phys.

M. Broglia, F. Catoni, and P. Zampetti, “Optogalvanic detection of uranium high-lying levels,” J. Phys. 44, 251–259 (1983).

J. Phys. B

V. K. Mago, B. Lal, A. K. Ray, R. Kapoor, S. D. Sharma, and P. R. K. Rao, “Two-colour three-step photoionisation of uranium,” J. Phys. B 20, 6021–6030 (1987).
[CrossRef]

V. K. Mago, B. Lal, A. K. Ray, P. R. K. Rao, and S. D. Sharma, “Single-colour photoionisation studies in uranium I,” J. Phys. B 20, 6531–6539 (1987).
[CrossRef]

M. Miyabe, I. Wakaida, and T. Arisawa, “Highly excited odd-parity states of atomic gadolinium,” J. Phys. B 29, 4073–4080 (1996).
[CrossRef]

M. Miyabe and I. Wakaida, “Identification of single-colour multiphoton ionization transitions of atomic gadolinium,” J. Phys. B 30, 4193–4206 (1997).
[CrossRef]

M. Miyabe, M. Oba, and I. Wakaida, “Highly excited odd-parity levels of atomic uranium,” J. Phys. B 33, 4957–4972 (2000).
[CrossRef]

V. K. Mago, A. K. Ray, B. Lal, and P. R. K. Rao, “Study of high-lying odd levels in U (I) by two-color photoionization,” J. Phys. B 21, 955–961 (1988).
[CrossRef]

Phys. Rev. A

G. P. Gupta and B. M. Suri, “Effects of laser linewidth on an effective method for excitation in three-level atomic systems by two optimally detuned counterpropagating pulsed lasers,” Phys. Rev. A 77, 023419 (2008).
[CrossRef]

C. E. Burkhart, J. L. Libbert, J. Xu, and J. J. Leventhal, “Absolute measurement of photoionization cross sections of excited atoms: application to determination of atomic beam densities,” Phys. Rev. A 38, 5949–5952 (1988).
[CrossRef]

Spectrochim. Acta, Part B

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321–332 (1999).
[CrossRef]

Other

L. Radziemski, R. Solarz, and J. A. Paisner, Laser Spectroscopy and Its Applications (Dekker, 1987).

B. W. Shore, The Theory of Coherent Atomic Excitations (Wiley, 1990).

P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988).

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, 1987).

G. S. Hurst and M. G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Adam Hilger, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for simultaneous observation of LIF and RIS signals.

Fig. 2.
Fig. 2.

Energy level diagram for single-color, three-photon photoionization and single-color laser-induced fluorescence when (A) the laser is tuned to resonance in first-step transition ( 0 16900.38 cm 1 ), (B) the laser is detuned from resonance in first-step transition by 0.15 cm 1 , so that it became two-photon resonant at 33801.06 cm 1 .

Fig. 3.
Fig. 3.

Simultaneously observed LIF and RIS signals for the two specific cases. (A) The laser was resonant to the first-step transition ( 0 16900.38 cm 1 ), (B) the laser was near-resonant to the first-step transition with a slight detuning ( 0.15 cm 1 ), so that it became two-photon resonant at 33801.06 cm 1 , (C) laser-induced background scattering signal in the absence of atomic beam.

Fig. 4.
Fig. 4.

Variation of photoionization efficiency with photoionization cross section for the two specific cases of laser detuning.

Fig. 5.
Fig. 5.

Variation of fluorescence efficiency with photoionization cross section for the two specific cases of laser detuning.

Tables (1)

Tables Icon

Table 1. Theoretical Ratios of LIF and RIS Signals for Several Values of the Photoionization Cross Section σ 3

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d d t ρ 11 = i Ω 1 2 ( ρ 21 ρ 12 ) + A 21 ρ 22 , d d t ρ 22 = i Ω 2 2 ( ρ 32 ρ 23 ) + i Ω 1 2 ( ρ 12 ρ 21 ) + A 32 ρ 33 1 T 2 ρ 22 , d d t ρ 33 = i Ω 2 2 ( ρ 23 ρ 32 ) ( 2 γ I + 1 T 3 ) ρ 33 , d d t ρ 32 = i Ω 2 2 ( ρ 22 ρ 33 ) i Ω 1 2 ρ 31 [ i Δ 2 eff + 0.5 ( 1 T 2 + 1 T 3 ) + γ L 2 + γ I ] ρ 32 , d d t ρ 23 = d d t ρ 32 * , d d t ρ 31 = i Ω 2 2 ρ 21 i Ω 1 2 ρ 32 [ i ( Δ 1 eff + Δ 2 eff ) + 0.5 ( 1 T 2 ) + γ L 1 + γ L 2 + γ I ] ρ 31 , d d t ρ 13 = d d t ρ 31 * , d d t ρ 21 = i Ω 1 2 ( ρ 11 ρ 22 ) + i Ω 2 2 ρ 31 [ i Δ 1 eff + 0.5 ( 1 T 1 ) + γ L 1 ] ρ 21 , d d t ρ 12 = d d t ρ 21 * , Δ 1 eff = Δ 1 ω 21 c v y , Δ 2 eff = Δ 2 + ω 32 c v y , Ω j = d j E 0 for j = 1 and 2 .
γ L 1 = 2 Δ ω las β 2 β 2 + Δ 1 2 ,
γ L 2 = 2 Δ ω las β 2 β 2 + Δ 2 2 .
P ( T las ) = 1 ρ 11 ( T las ) ρ 22 ( T las ) ρ 33 ( T las ) .
Ω m ( rad / s ) = 8.895 × 10 10 ( 3 λ cm 3 g n A nm I W / cm 2 / g m ) 1 / 2 ,
A nm ( s 1 ) = [ d m ( D e b y e ) ] 2 g m 3.19 × 10 6 λ cm 3 g n .
d 1 d 2 = ( λ 1 λ 2 ) 3 / 2 ( g 2 / g 1 g 3 / g 2 ) 1 / 2 ( T 3 0.9 T 2 ) 1 / 2 .
A 21 A 32 = T 3 0.9 T 2 .
Δ ν D = 7.16 × 10 7 ν 0 ( T / M ) 1 / 2 ,

Metrics