Abstract

We provide a numerical study showing that a bottom reflector is indispensable to achieve unidirectional emission from a photonic-crystal (PhC) nanolaser. First, we study a PhC slab nanocavity suspended over a flat mirror formed by a dielectric or metal substrate. We find that the laser’s vertical emission can be enhanced by more than a factor of 6 compared with the device in the absence of the mirror. Then, we study the situation where the PhC nanocavity is in contact with a flat metal surface. The underlying metal substrate may serve as both an electrical current pathway and a heat sink, which would help achieve continuous-wave lasing operation at room temperature. The design of the laser emitting at 1.3 μm reveals that a relatively high cavity Q of over 1000 is achievable assuming room-temperature gold as a substrate. Furthermore, linearly polarized unidirectional vertical emission with the radiation efficiency over 50% can be achieved. Finally, we discuss how this hybrid design relates to various plasmonic cavities and propose a useful quantitative measure of the degree of the “plasmonic” character in a general metallic nanocavity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription