Abstract

A semianalytical evaluation of laser-beam-induced thermal deformation of III–V semiconductor-based saturable Bragg reflectors is presented. The thermally induced bowing and resulting optical aberrations for different incident laser spot sizes and saturable Bragg reflector dimensions are calculated. Also discussed are the effects of the major physical and optical SESAM and laser parameters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003).
    [CrossRef]
  2. D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davis, and S. W. Bland, “High-average-power (>20  W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17, 919–926 (2000).
    [CrossRef]
  3. Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26, 199–201 (2001).
    [CrossRef]
  4. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of output power,” Opt. Lett. 35, 2302–2304 (2010).
    [CrossRef]
  5. D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.
  6. G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
    [CrossRef]
  7. J.-L. He, C.-K. Lee, J. Y. J. Huang, S.-C. Wang, C.-L. Pan, and K.-F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector,” Appl. Opt. 42, 5496–5499 (2003).
    [CrossRef]
  8. J. A. Berger, M. J. Greco, and W. A. Schroeder, “High-power femtosecond, thermal-lens-shaped Yb:KGW oscillator,” Opt. Express 16, 8629–8640 (2008).
    [CrossRef]
  9. L. F. Mollenauer and R. H. Stohlen, “Soliton laser,” Opt. Lett. 9, 13–15 (1984).
    [CrossRef]
  10. F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12, 407–409 (1987).
    [CrossRef]
  11. L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
    [CrossRef]
  12. S. R. Henion and P. A. Schultz, “Yb:YAG laser: mode-locking and high-power operation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1992), paper CThQ2.
  13. P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
    [CrossRef]
  14. U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  15. M. Ramaswamy-Paye and J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994).
    [CrossRef]
  16. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
    [CrossRef]
  17. D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
    [CrossRef]
  18. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
    [CrossRef]
  19. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
    [CrossRef]
  20. S. L. Schieffer, D. Brajkovic, A. I. Cornea, and W. A. Schroeder, “Low-threshold, dual-passive mode locking of a large mode area Nd:GdVO4 laser,” Opt. Express 14, 6694–6704 (2006).
    [CrossRef]
  21. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
    [CrossRef]
  22. P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
    [CrossRef]
  23. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, and H. Takahashi, “Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser,” Opt. Lett. 23, 1465–1467 (1998).
    [CrossRef]
  24. B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
    [CrossRef]
  25. Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
    [CrossRef]
  26. M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett. 29, 2246–2248 (2004).
    [CrossRef]
  27. M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.
  28. D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010).
    [CrossRef]
  29. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [CrossRef]
  30. U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
    [CrossRef]
  31. U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
    [CrossRef]
  32. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of anti-resonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
    [CrossRef]
  33. F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
    [CrossRef]
  34. BATOP GmbH, Wildenbruchstrasse 15, 07745 Jena, Germany, info@Batop.de .
  35. Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
    [CrossRef]
  36. J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
    [CrossRef]
  37. H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    [CrossRef]
  38. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
    [CrossRef]
  39. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  40. Y. Peng, Z. Cheng, T. Zhang, and J. Qui, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001).
    [CrossRef]
  41. J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
    [CrossRef]
  42. Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
    [CrossRef]
  43. H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
    [CrossRef]
  44. F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
    [CrossRef]
  45. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
    [CrossRef]
  46. W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
    [CrossRef]
  47. X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
    [CrossRef]
  48. S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
    [CrossRef]
  49. engineeringtoolbox.com .
  50. K. V. Volodchenko, M. S. Hurdoglyan, C.-M. Kim, and G. U. Kim, “Observation and investigation of off-axis modes in a high-power Nd:YAG laser,” Appl. Opt. 43, 4768–4773(2004).
    [CrossRef]
  51. A. E. Siegman, “Analysis of laser beam quality degradation cause by quartic phase aberrations,” Appl. Opt. 32, 5893–5901 (1993).
    [CrossRef]
  52. S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999).
    [CrossRef]
  53. A. Sadao, “GaAs, AlAs, and AlxGax−1As: material parameters or use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
    [CrossRef]
  54. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
    [CrossRef]
  55. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
    [CrossRef]
  56. V. P. Nayyar and N. K. Verma, “Two-point resolution of Gaussian apertures operating in partially coherent light using various resolution criteria,” Appl. Opt. 17, 2176–2180 (1978).
    [CrossRef]

2010 (2)

2009 (1)

2008 (1)

2006 (1)

2004 (4)

K. V. Volodchenko, M. S. Hurdoglyan, C.-M. Kim, and G. U. Kim, “Observation and investigation of off-axis modes in a high-power Nd:YAG laser,” Appl. Opt. 43, 4768–4773(2004).
[CrossRef]

M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett. 29, 2246–2248 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[CrossRef]

2003 (2)

2001 (5)

Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26, 199–201 (2001).
[CrossRef]

Y. Peng, Z. Cheng, T. Zhang, and J. Qui, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001).
[CrossRef]

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

2000 (3)

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

D. Burns, M. Hetterich, A. I. Ferguson, E. Bente, M. D. Dawson, J. I. Davis, and S. W. Bland, “High-average-power (>20  W) Nd:YVO4 lasers mode locked by strain-compensated saturable Bragg reflectors,” J. Opt. Soc. Am. B 17, 919–926 (2000).
[CrossRef]

1999 (4)

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999).
[CrossRef]

Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

1998 (3)

J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, and H. Takahashi, “Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser,” Opt. Lett. 23, 1465–1467 (1998).
[CrossRef]

1997 (1)

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

1996 (5)

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef]

1995 (5)

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of anti-resonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

1994 (3)

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[CrossRef]

M. Ramaswamy-Paye and J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

1993 (2)

1992 (1)

1989 (1)

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

1987 (1)

1985 (3)

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[CrossRef]

A. Sadao, “GaAs, AlAs, and AlxGax−1As: material parameters or use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

1984 (1)

1978 (1)

Andersen, D. R.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

Aschwanden, A.

Asom, M. T.

Aus der Au, J.

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Baer, C. R. E.

Balembois, F.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Bauer, D.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Bente, E.

Berger, J. A.

Bergman, K.

Birge, J. R.

Bland, S. W.

Boyd, G. D.

Brajkovic, D.

Braun, B.

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Brovelli, L. R.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of anti-resonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

Brunner, F.

Burns, D.

Byun, H.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Calasso, I.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Capinski, W. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Cardona, M.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Chao, D.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Chen, G.

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

Chen, Y. C.

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Chen, Y. F.

Chénais, S.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Cheng, Z.

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

Y. Peng, Z. Cheng, T. Zhang, and J. Qui, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001).
[CrossRef]

Chiu, T. H.

Collings, B. C.

Cornea, A. I.

Cunningham, J. E.

B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
[CrossRef]

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

Davis, J. I.

Dawson, M. D.

Dekorsy, T.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Demirbas, U.

Druon, F.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Dvorak, M. D.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

Eng, L. E.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Fang, J.

J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

Ferguson, A. I.

Ferguson, J. F.

Fluck, R.

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Forget, S.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Fujimoto, J. G.

Georges, P.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

Golling, M.

Goodier, J. N.

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

Goossen, K. W.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

Gopinath, J. T.

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

Gossard, A. C.

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[CrossRef]

Greco, M. J.

Grein, M. E.

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

Guerreiro, P. T.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[CrossRef]

Häring, R.

Haus, H.

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

He, J.-L.

Heckl, O. H.

Henion, S. R.

S. R. Henion and P. A. Schultz, “Yb:YAG laser: mode-locking and high-power operation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1992), paper CThQ2.

Herda, R.

Hetterich, M.

Hönninger, C.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Huang, J. Y. J.

Huang, K. F.

Huang, K.-F.

Huber, G.

Hurdoglyan, M. S.

Innerhofer, E.

Ippen, E. P.

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Itatani, T.

Jan, W. Y.

Joschko, M.

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Jung, I. D.

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kamp, M.

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Kärtner, F.

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kärtner, F. X.

D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010).
[CrossRef]

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Katzer, D. S.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Keller, U.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of output power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[CrossRef]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of anti-resonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[CrossRef]

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[CrossRef]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef]

Killi, A.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Kim, C.-M.

Kim, G. U.

Kim, Y. M.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Kleinbauer, J.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Knox, W. H.

Kobayashi, K.

Kolodziejski, L.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Kolodziejski, L. A.

D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010).
[CrossRef]

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:Colquiriite lasers,” Opt. Express 17, 14374–14388 (2009).
[CrossRef]

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Koontz, E. M.

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Kopf, D.

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef]

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Kränkel, C.

Kumkar, M.

Lan, Y. P.

Langlois, P.

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Lanker, M.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

Lebens, J. A.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Lee, C.-K.

Lee, K. K.

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Leger, J.

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999).
[CrossRef]

Li, D.

Makki, S.

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999).
[CrossRef]

Maris, H. J.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Miller, D. A. B.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef]

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Morse, J.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Moser, M.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

Motamedi, A.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Nakagawa, T.

Nayyar, V. P.

Okhotnikov, O. G.

Pan, C.-L.

Paschotta, R.

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

Pathak, R.

Peng, Y.

Y. Peng, Z. Cheng, T. Zhang, and J. Qui, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001).
[CrossRef]

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

Petermann, K.

Peters, R.

Petrich, G.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Petrich, G. S.

Peyghambarian, N.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Ploog, K.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Qiu, J.

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

Qui, J.

Ramaswamy-Paye, M.

Ruf, T.

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Rusu, M.

Sadao, A.

A. Sadao, “GaAs, AlAs, and AlxGax−1As: material parameters or use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

Sander, M. Y.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Saraceno, C. J.

Schättinger, F.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Schibli, T. R.

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Schieffer, S. L.

Schroeder, W. A.

Schultz, P. A.

S. R. Henion and P. A. Schultz, “Yb:YAG laser: mode-locking and high-power operation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1992), paper CThQ2.

Sennaroglu, A.

Sercel, P. C.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Shen, H. M.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Siegman, A. E.

Silverberg, Y.

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Slobodchikov, E.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Smirl, A. L.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

Smith, J. S.

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

Smith, P. W.

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Soileau, M. J.

Spühler, G. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef]

Stark, J. B.

Stohlen, R. H.

Südmeyer, T.

Sugaya, T.

Sutter, D. H.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Takahashi, H.

Tell, B.

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Ten, S.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Thoen, E. R.

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Timoshenko, S.

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

Torizuka, K.

Tsai, S. W.

Tsuda, S.

Vahala, K. J.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Van Stryland, E. W.

Vanherzeele, H.

Verma, A.

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

Verma, N. K.

Volodchenko, K. V.

Wagenblast, P.

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

Walker, J. A.

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

Wang, P.

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Wang, S. C.

Wang, S.-C.

Weingarten, K. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912–915 (1996).
[CrossRef]

Wherrett, B. S.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

Wiegmann, W.

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

Woo, J. C.

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

Woodall, M. A.

Yariv, A.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Yu, X. Y.

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

Zarem, H. A.

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

Zhang, G.

Zhang, S.

J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

Zhang, T.

Zhang, Y.

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

Zhang, Z.

Zhou, S.-H.

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (6)

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B 71, 19–25 (2000).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79, 331–339 (2004).
[CrossRef]

J. Fang and S. Zhang, “Modeling for laser-induced surface thermal lens in semiconductors,” Appl. Phys. B 67, 633–639 (1998).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79, 221–224 (2004).
[CrossRef]

U. Keller, “Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, 347–363 (1994).
[CrossRef]

Appl. Phys. Lett. (5)

H. A. Zarem, P. C. Sercel, J. A. Lebens, L. E. Eng, A. Yariv, and K. J. Vahala, “Direct determination of the ambipolar diffusion length in GaAs/AlGaAs heterostructures by cathode luminescence,” Appl. Phys. Lett. 55, 1647–1649 (1989).
[CrossRef]

E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, “Two-photon absorption is semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 74, 3927–3929 (1999).
[CrossRef]

Y. Silverberg, P. W. Smith, D. A. B. Miller, B. Tell, A. C. Gossard, and W. Wiegmann, “Fast nonlinear optical response from proton-bombarded multiple quantum well structures,” Appl. Phys. Lett. 46, 701–703 (1985).
[CrossRef]

J. T. Gopinath, E. R. Thoen, E. M. Koontz, M. E. Grein, L. A. Kolodziejski, and E. P. Ippen, “Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors,” Appl. Phys. Lett. 78, 3409–3411 (2001).
[CrossRef]

X. Y. Yu, G. Chen, A. Verma, and J. S. Smith, “Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure,” Appl. Phys. Lett. 67, 3554–3556(1995).
[CrossRef]

Electron. Lett. (1)

L. R. Brovelli, M. Lanker, U. Keller, K. W. Goossen, J. A. Walker, and J. E. Cunningham, “An antiresonant Fabry-Perot quantum well modulator to actively mode-lock and synchronize solid state lasers,” Electron. Lett. 31, 381–382 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Makki and J. Leger, “Solid-state laser resonators with diffractive optic thermal aberration correction,” IEEE J. Quantum Electron. 35, 1075–1085(1999).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers—what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

U. Keller, K. J. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[CrossRef]

H. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
[CrossRef]

J. Appl. Phys. (1)

A. Sadao, “GaAs, AlAs, and AlxGax−1As: material parameters or use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

P. T. Guerreiro, S. Ten, E. Slobodchikov, Y. M. Kim, J. C. Woo, and N. Peyghambarian, “Self-starting mode-locked Cr:forsterite laser withsemiconductor Bragg reflector,” Opt. Commun. 136, 27–30 (1997).
[CrossRef]

P. Wang, S.-H. Zhou, K. K. Lee, and Y. C. Chen, “Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Commun. 114, 439–441 (1995).
[CrossRef]

Opt. Eng. (2)

F. X. Kärtner, L. R. Brovelli, D. Kopf, M. Kamp, I. Calasso, and U. Keller, “Control of solid-state laser dynamics by semiconductor devices,” Opt. Eng. 34, 2024–2036 (1995).
[CrossRef]

Y. Peng, Z. Cheng, Y. Zhang, and J. Qiu, “Laser-induced temperature distributions and thermal deformations in sapphire, silicon, and calcium fluoride substrates at 1.315 μm,” Opt. Eng. 40, 2822–2829 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (15)

D. Li, U. Demirbas, J. R. Birge, G. S. Petrich, L. A. Kolodziejski, A. Sennaroglu, F. X. Kärtner, and J. G. Fujimoto, “Diode-pumped passively mode-locked GHz femtosecond Cr:LiSAF laser with kW peak power,” Opt. Lett. 35, 1446–1448 (2010).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of output power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef]

M. Rusu, R. Herda, and O. G. Okhotnikov, “Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity,” Opt. Lett. 29, 2246–2248 (2004).
[CrossRef]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef]

Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, and H. Takahashi, “Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser,” Opt. Lett. 23, 1465–1467 (1998).
[CrossRef]

Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, “Self-starting mode-locked Cr4+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror,” Opt. Lett. 24, 1768–1770 (1999).
[CrossRef]

Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, “Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector,” Opt. Lett. 26, 199–201 (2001).
[CrossRef]

D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486–488 (1996).
[CrossRef]

B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, R. Pathak, and K. Bergman, “Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser,” Opt. Lett. 21, 1171–1173 (1996).
[CrossRef]

L. F. Mollenauer and R. H. Stohlen, “Soliton laser,” Opt. Lett. 9, 13–15 (1984).
[CrossRef]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[CrossRef]

F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12, 407–409 (1987).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef]

U. Keller, T. H. Chiu, and J. F. Ferguson, “Self-starting femtosecond mode-locked Nd:glass laser using intracavity saturable absorbers,” Opt. Lett. 18, 1077–1079 (1993).
[CrossRef]

M. Ramaswamy-Paye and J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994).
[CrossRef]

Phys. Rev. B (1)

W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999).
[CrossRef]

Other (6)

engineeringtoolbox.com .

S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).

BATOP GmbH, Wildenbruchstrasse 15, 07745 Jena, Germany, info@Batop.de .

D. Bauer, P. Wagenblast, F. Schättinger, J. Kleinbauer, D. H. Sutter, A. Killi, and T. Dekorsy, “Energies above 30 μJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator,” in Advanced Solid-State Photonics (Optical Society of America, 2011), paper ATuC2.

S. R. Henion and P. A. Schultz, “Yb:YAG laser: mode-locking and high-power operation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1992), paper CThQ2.

M. Y. Sander, H. Byun, J. Morse, D. Chao, H. M. Shen, A. Motamedi, G. Petrich, L. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “1 GHz femtosecond erbium-doped fiber lasers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuII1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the idealized cylindrical SESAM (with radial co-ordinates r and z indicated) mounted on the copper cooling block.

Fig. 2.
Fig. 2.

Evaluated temperature distributions T(r,z) for the 400 μm thick and 4 mm diameter SESAM with ΔRS=0.8%, ΔRNS=1.2%, and S=3: incident laser spot sizes (a) w=100μm and (b) w=1mm.

Fig. 3.
Fig. 3.

Laser-induced thermal bowing for the 400 μm thick and 4 mm diameter SESAM with ΔRS=0.8% and ΔRNS=1.2% operated at S=3: data and polynomial fit (points and thick curve), perfect parabolic mirror approximation (dotted curve), and electric field distribution of the incident TEM00 laser mode (thin curve). Top: incident laser spot size, w=100μm. Bottom: w=1mm.

Fig. 4.
Fig. 4.

Magnitudes of the inverse radius of curvature (|1/R|) and relative aberration ratio |8c2R3/3| of the laser-induced front-surface mirror bowing as a function of the incident laser spot size, w, for the 400 μm thick and 4 mm diameter SESAM with ΔRS=0.8% and ΔRNS=1.2%, operated at S=3.

Fig. 5.
Fig. 5.

Magnitudes of the inverse radius of curvature (|1/R|) and relative aberration ratio |8c2R3/3| of the laser-induced front-surface mirror bowing as a function of F/FS for the 400 μm thick and 4 mm diameter SESAM with ΔRS=0.8%, ΔRNS=1.2%, and an incident laser spot size w=100μm.

Fig. 6.
Fig. 6.

Dependence of (a) the magnitude of the radius of curvature (|1/R|) and (b) the relative aberration ratio 8c2R3/3 of the laser-induced front-surface mirror bowing as a function of SESAM substrate thickness, d, for three different incident laser spot sizes, w=10μm, 100 μm, and 1 mm. In all cases, a 4 mm diameter SESAM with ΔRS=0.8% and ΔRNS=1.2% operated at S=3 is assumed. The inset in (b) shows the sign change of the relative aberration ratio 8c2R3/3 for the largest laser spot size when d750μm.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2Tr2+1rTr+2Tz2=α·q(r)κtheαz,
kthTr|r=a=hairT(r=a,z),
kthTz|z=0=hairT(r,z=0),
kthTr|z=d=hIndiumT(r,z=d).
q(r)=RrepF0exp(2r2w2)(ΔRNS+ΔRS1+Sexp[2r2w2]),
T˜=0aTcos(uz+ϕ)dz,
T(z)=lalcos(ulz+ϕl),
al=T˜(ul)4ul2uldsin(2ϕ)+sin(2(uld+ϕ))cos(ulz+ϕ).
T˜(p)=0aT(r)J0(pr)rdr,
T(r,z)=2a2n=1T˜(pn,z)J0(pnr)J02(pna)+J12(pna),
ΔRSF=ΔRSS+exp(2r2w2)=ΔRSg=1gfinalβgexp(γgr2w2).
T(r,z)=2al,n=14ulcos(ulz+ϕl)2uld+sin(2(uld+ϕl))sin(2ϕl)J0(pnr)J12(pna)+J02(pna)αaP0(αa2+pn2)(αa2+ul2)kth×(ΔRNSw024{exp(pn2w028)exp(2a2w02)m=0(pnw024a)mJm(apn)whenpnw024a<1exp(2a2w02)m=1(4apnw02)mJm(apn)otherwise+ΔRSw022γg{βggexp(pn2w024γg)exp(γga2w02)m=0(pnw022γag)mJm(apn)whenw02pn2aγg<1βggexp(γga2w02)m=1(2γgapnw02)mJm(apn)otherwise)×ulsin(uld+ϕl)exp(αad)αacos(uld+ϕl)exp(αad)+αacos(ϕl)ulsin(ϕl).
Ψ=(1+ν)αexp4π(1ν)T(r,ϕ,z)1|r|rdrdϕdz,
Δz(r)=Δz0+r22R+3r48R3+,
0aexp(γgrw2)J0(pr)rdr.
1p20apexp(γgη2w2p2)J0(η)ηdη.
w22γg[m=0Jm(ap)(w2p2γga)mexp(γga2w2)m=0limx0Jm(x)xm(w2p22γg)m],
w22γg[exp(w2p24γg)m=0Jm(ap)(w2p2γga)mexp(γga2w2)].
w22γgm=1Jm(ap)(2γgaw2p)mexp(γga2w2).

Metrics